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ABSTRACT 

A transverse resonance mode matching technique has been developed to analyse passive 
microwave and millimetre-wave waveguides and components. This technique possesses 
superior computational efficiency when compared to more general approaches such as the 
finite element method. This advantage is particularly useful for analysing broadband 
components used in electronic warfare systems. In this report, the theory behind this 
transverse resonance analysis is presented in detail. Theoretical results for several 
waveguiding structures are presented and compared with experimental or published data to 
verify the analysis. 
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Transverse Resonance Analysis Technique for 
Microwave and Millimetre-Wave Circuits 

EXECUTIVE SUMMARY 

An efficient and accurate method for analysis of broad bandwidth microwave and millimetre-wave 
devices has been developed. This report describes the method in detail and the results obtained by 
applying the method to typical microwave structures are compared with experimental or published 
data to verify the accuracy of the method. 
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1   INTRODUCTION 

1.1    Purpose of this study 
Computer-aided design software for microwave circuits is now readily available, at 
considerable cost, from companies such as Hewlett Packard, Compact Software, and many others. 
However, these software packages mostly are directed towards analysing planar integrated 
circuits using microstrip, and variants such as coplanar waveguide but do not adequately analyse 
other structures in use especially at mm-wave frequencies. Structures such as rectangular or 
circular waveguide, finline, dielectric waveguides are only analysed in an approximate manner 
(many programs are dominant-mode only) if at all. More specifically, some of the limitations 
have been identified to include: [1] 

1. the inability to predict the onset of, and the consequences of, higher order propagating 
modes. 

2. the lack of design information for popularly emerging 'new' transmission media, e.g. 
finlines. 

3. the lack of design information concerning active devices at millimetre wavelengths. 
(Low frequency design models cannot be successfully extrapolated because of the 
increasing importance of parasitic elements and the distributed nature of the problem.) 

4. the lack of design information relating to discontinuities in transmission media at 
millimetre wavelengths, and 

5. the inability to predict the interaction of circuit elements which are in close proximity 
to one another. 

The main areas of weakness of existing commercial software are thus in the areas of conventional 
waveguides, finline, dielectric waveguides, transitions between various structures, and the 
capability to explore new waveguiding structures. These problems are slowly being overcome 
through the use of field-theory based simulators [2] as a replacement for, or in conjunction with, 
circuit-theory based simulators. However, even these simulators are mostly oriented toward 
planar circuits because this is where the greatest commercial demand lies. The exception is some 
software (mostly based on the finite-element method) such the High-Frequency Structure 
Simulator from Hewlett Packard. While this is sufficiently general to analyse many circuits, it 
requires a powerful computer to analyse even relatively simple circuits. There is always a trade 
off between methods that are relatively simple to implement but require a lot of computation 
power and methods that are highly efficient but either lack generality or are complex to 
implement. 

This report describes an approach which, while more efficient than general field-theory based 
methods such as the finite element method, still enables a wide variety of circuits to be 
analysed. The philosophy has been to pursue the middle ground - that is, a method which is 
general enough to solve a variety of practical problems that occur particularly in millimetre- 
wave circuit design, but at the same time is efficient enough to be used for routine design. 

The prime motivation for this work has been that many electronic warfare applications require 
extremely broadband components (multi-octave) and the constraints in the design of these 
components are much more severe than for narrow band components. For example, in the design of 
a broadband amplifier or mixer, there is a direct trade off between gain (or conversion loss) and 
bandwidth. Moreover, high performance for e.g. direction-finding may require a high degree of 
gain flatness and matching between individual components. This combination of broad 
bandwidths and high precision can only be economically achieved with accurate computer 
analysis techniques which are specifically designed for these tasks. 
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1.2    Review 

A wide variety of numerical techniques for the analysis of microwave and millimetre-wave 
structures have been developed over the years and, aided by the rapid advances in computing 
technology, many are beginning to now reach a level of maturity. However, no single technique is 
suited to all problems and this situation is unlikely to change. At present, one must choose a 
technique (or software package) that is appropriate to the problem being solved, just as a 
tradesperson chooses the suitable tool based on training and experience. What will happen in 
the future is that design software will have a range of techniques built into the one package and 
the user will be largely unaware of which technique is being used because it will be the software 
rather than the user that will choose the most appropriate technique. 

1.2.1     Analysis techniques 

Analysis techniques have been described in detail in recent books edited by Itoh [3], 
Sorrentino [4], and Yamashita [5]. These methods are summarised in Table 1.1 according to 
the chapter headings in the books and grouped to show where the methods are common to 
more than one book. There is also a certain amount of overlap between many techniques e.g. 
the transverse resonance technique uses mode-matching which in turn is fundamentally a 
moment method. Methods other than transverse resonance and mode matching will not be 
discussed further in this report. 

Table 1.1     Summary of analysis techniques. 

Itoh [3] Sorrentino [4] Yamashita [5] 

The Finite Element Method Finite-Element Method 
Finite-Difference Method 

The Finite-Element Method 

Boundary-Element Method The Boundary-Element Method 

The Transmission Line Matrix 
(TLM) Method 

Transmission-Line Matrix 
Method 

Planar Circuit Analysis Planar-Circuit Approach 

Spectral Domain Approach Spectral-Domain Approach The Spectral Domain Method 

The Method of Lines Method of Lines 

Integral Equation Technique Method of Moments 

The Mode-Matching Method Mode-Matching and Field- 
Matching Techniques 

The Mode-Matching Method 
The Point-Matching Method 

Transverse Resonance Technique Transverse Resonance 
Techniques 

The Waveguide Model for the 
Analysis of Microstrip 
Discontinuities 

Generalised Scattering Matrix 
Technique 

The Wiener-Hopf and Modified 
Residue Calculus Techniques 

The Geometrical Theory of 
Diffraction 

The Equivalent Source Method 

Asymptotic Expansion Methods 

The Beam Propagation Method 
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1.2.2     Origins and background of current method 

A brief summary of work that has influenced the current development follows. This is not 
an exhaustive review but summarises key developments. The beginnings of the method can 
be found in the early work on microwave network theory of Montgomery, Dicke and 
Purcell [6], and Marcuvitz [7] in the well known MIT Radiation Laboratory Series and also 
a little later in Altschuler and Goldstone [8] who developed network representations of 
waveguide obstacles. Clarricoats and Oliner [9] derived a transverse-network 
representation for hybrid modes in inhomogeneously filled waveguides using a method 
employed previously in the representation of slotted waveguides. Felsen and 
Marcuvitz [10] described a generalised derivation of the transverse field equations and 
modal representations of the electromagnetic field in transversely inhomogeneous regions. 
Kerns [11] discussed concepts and conditions underlying the establishment and use of 
immittance- and scattering-matrix descriptions of waveguide n-ports. Peng and Oliner [12] 
discussed a class of open dielectric waveguides which is of direct importance to the areas 
of integrated optics and millimetre-wave integrated circuits and presented a 
mathematical formulation based on a rigorous mode-matching procedure. Bornemann and 
Arndt [13] used transverse resonance to calculate the characteristic impedance of finlines 
with up to three slots by a rigorous hybrid-mode analysis. Masterman and Clarricoats [14] 
described a computational method for solving a wide range of transverse waveguide 
discontinuity problems and showed that in some cases, the solution is found to be sensitive 
to the way in which infinite series of field functions is truncated. They further showed 
how the optimum form of truncation can be determined for many configurations of practical 
importance. Ping and Jingfeng [15] investigated the filter characteristic of NRD 
waveguide by combining a network approach with mode matching theory in an 
application of the method of Peng and Oliner. Bates and Ko [16] used multi-modal 
admittance matrices to represent the coupled radial regions in a waveguide diode 
mounting structure. 

1.3 Scope of this study 

The analysis described in this report is a full three-dimensional mode matching analysis using 
generalised transverse resonance to analyse the constituent two-dimensional cross-sections in 
passive waveguide structures. The structure is assumed to be lossless and consisting of 
homogeneous and isotropic cuboidal sub-sections which may be dielectric filled. 

1.4 Overview of contents 

Chapter 2 describes the technique in detail, while chapter 3 gives results, including dispersion 
plots for a range of two-dimensional structures and S-parameter results for selected 
3-dimensional structures. The results are intended to verify the applicability and accuracy of the 
analysis and are not a detailed study of any particular structure. 

2   TECHNIQUE DEVELOPMENT 

2.1    General Procedure 

Consider a waveguide circuit element made up of a number of cascaded sections as shown in 
Figure 2.1. Each section is uniform in the direction of propagation (chosen to be the z-direction), 
and consists of a number of connected rectangular regions. Each region may contain an arbitrary 
number of dielectric layers. A brief outline of a transverse resonance mode matching technique to 
determine the scattering parameters of the circuit element follows: 
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(i)      Subdivision of waveguide element 

Each section (uniform in the direction of propagation) in the element is sub-divided into layers 
and regions comprising homogeneous and isotropic segments of rectangular cross-section. Layers 
aligned vertically and not separated by conducting surfaces are combined vertically to form 
subregions. Vertically aligned subregions are in turn combined to form regions. Regions are 
stacked horizontally to construct sections. For much of the discussion of this chapter, only simple 
regions such as those shown in Figure 2.1 which consist of a single subregion need be considered. 
(An example of a subregion is shown in Figure 2.5.) Once the waveguide element is subdivided, 
the analysis proceeds by first analysing all of the subregions of a section. 

element 

section 

Figure 2.1    Structure geometry 

(i i)    Analysis of section subregions 

The transverse resonance technique is first applied in the y-direction to obtain mode eigenvalues 
and eigenfunctions for each subregion in each section. The subregion eigenmodes propagate in the 
u-direction, which lies in the x-z plane. This concept is described further in [12]. These 
eigenmodes are therefore referred to as «-modes. For a given free-space wavenumber ko, the 
propagation constant ku, or the «-mode eigenvalue, is given by: 

K=M+kl 
{l - ^'K£i -K 

Note that while ky is dependent on each layer's dielectric constant er and the layer's thickness, 
kx (and hence k„) is constant across a subregion because of field continuity at layer interfaces. 
Field continuity at subregion interfaces requires k2 to be the uniform across the entire section. 
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Therefore, by determining the subregion eigenmodes and eigenfunctions, the effect of individual 
layers is determined, and the analysis proceeds by combining subregions. 

(iii)   Analysis of individual sections 

To obtain the required z-mode eigenvalues and eigenfunctions for each section, the transverse 
resonance technique is applied in the ^-direction. This stage of the calculation is generally the 
most computationally demanding, since there are a number of steps involved in this process 
which must be repeated many times. These steps are: 

(a) Assume an initial value of kz for a particular z-mode in the section. 

(b) From the subregion u-mode data, calculate the corresponding x-mode eigenvalues, or 
propagation constants kx, and eigenfunctions for each region. The propagation constants 
are given by 

=v? 
(c) Apply the transverse resonance technique in the x-direction, including x-mode 
coupling at region interfaces. The assumed value of k2 is varied iteratively and steps (b) 
and (c) repeated until the transverse resonance condition is satisfied. Such values of k2 

correspond to z-mode eigenvalues for the section. The z-mode eigenfunctions are calculated 
from x-mode data. 

(iv)   Analysis of complete element 

Having obtained the field expansion in the individual sections expressed by the z-mode 
eigenvalues and eigenfunctions, the scattering parameters of both the sections themselves and 
the discontinuities arising at section interfaces can be determined. By cascading these scattering 
matrices, the scattering matrix for the entire waveguide element is readily determined. This 
constitutes the desired output from the analysis. 

2.2    Definitions and conventions 

The rectangular coordinate system from [17] shown in Figure 2.1 was adopted, with unit vectors 
denoted by (ux, Uy, uz). The dependence on time t is assumed throughout to be e/0* where / = V-l 
and       co =27tf and/is the operating frequency. 

Let the total electric and magnetic field in the waveguide in the transverse cross-section of the 
jth section be given by vectors E; and H/ respectively. The total field in the ftri two-dimensional 
section is uniquely described by the tangential fields alone so we may let 

E,=EJ(+£,,+£„ 

= E,,+EZ/ 

where Et; is the tangential electric field and similarly for the magnetic field. If the field is 
represented by a sum of normal modes in each subregion of the z"1 cross-section, then the total 
tangential fields may be expressed by a weighted sum over all possible modes 
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E,, = I «Tef 
m=0 

m 

m=0 

i.e. for each mode 

where v™ and i™ are equivalent voltages and currents which are functions of the propagation 

coordinate variable only and ef and h™ are mode functions which depend on the transverse 
variables (and physical geometry) only. These equivalent voltages and currents can be used in a 
circuit model of the waveguide e.g. the modal transfer admittance between mode m at port i and 
mode p at port j is given by 

mp _ h_ 

J 

2.3    Method 

Following the general procedure outlined in Section 2.1, the method is developed in greater 
detail. The transverse resonance technique is applied first in the y-direction in the subregion 
analysis and then again in the ^-direction in the section analysis. Once the required number of 
section modes have been calculated for each section using the transverse resonance approach, a 
mode matching technique is used to calculate the scattering parameters of the complete element 
formed by cascading its constituent sections. 

2.3.1     Multilayer parallel plate analysis (subregions) 

The first step is to apply the transverse resonance technique in the y-direction to 
determine the subregion u-mode eigenvalues and eigenfunctions. This mode data will 
implicitly contain the effects associated with individual layers in a given subregion, 
reducing the required analysis to the subregion level for each two-dimensional section. 

Consider propagation in a multi-dielectric-layer parallel-plate transmission-line 
structure shown in Figure 2.2 [cf [12], p. 847]. This is a classical Sturm-Liouville eigenvalue 
problem [18]. To find the eigenvalues (propagation constants) and eigenfunctions (mode 
functions) for propagation perpendicular to the plates (y-direction), we apply the 
transverse resonance technique in this direction. Each layer can be then considered as a 
portion of a lossless transmission line with modes propagating in the y direction, as shown 
in Figure 2.2. These modes are referred to as y-modes because of their direction of 
propagation. The voltages and currents on the transmission lines are directly related to 
the mode functions, and hence the y-mode electromagnetic fields. 

Normally, the choice of modes would be transverse electric (TE) and transverse magnetic 
(TM) to the direction of propagation (y in this case). However, alternative representations 
using modes that are either TE-to-x and TM-to-x or TE-to-z and TM-to-zmay lead to 
simpler (and computationally more efficient) representations under particular conditions 
such as subregions or sections with uniform dielectric constants. The choice of 
representation is discussed further in Section 2.3.2. 
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subregion ■ 

upper plate 

~~3T 

_s s 
lower plate 

transmission lines 

Figure 2.2    Equivalent transmission line network for y-mode analysis 

TE and TM-to-y modes are used in multilayered dielectric subregions since there is no 
coupling between TE and TM modes at dielectric discontinuities, resulting in a more 
straightforward analysis. For this choice of eigenmode, the characteristic admittance of 
layer I with relative dielectric constant e/ is given by 

■' _   yi Y,= 
(OHO 

for TE - to - y modes 

Y, =—rM-       for TM-to-v modes 

yi 

where co = 2nf where f is the frequency, no and eo are the permittivity and permeability 
respectively of a vacuum. 

By contrast, TE and TM-to-x and z modes are used only in uniform subregions, which consist 
of a single dielectric layer, since TE-TM mode coupling would otherwise occur at dielectric 
discontinuities between layers. For uniform subregions, similar admittances can be defined 
for TE, TM-to-x and TE, TM-to-z modes as follows 

Y, =—n^-       for TE-to-x,TE-to-zmodes, 
k kyi 

Yl = 
yi 

(OHO 
f or TM - to - x, TM - to - z modes 
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The restriction that these modes can only be used for uniform subregions is reflected by the 
fact that the dielectric constants for individual layers are no longer contained in the 
modal admittances. 

As stated previously, the propagation constant in the y-direction for the Zth layer, k^, is 

related to the propagation constant ku by 

The subregion analysis proceeds by first assuming the maximum possible value of ku. The 
admittances of the transmission lines shown in Figure 2.2 are evaluated for each y-mode. 
Using these admittance values, the modal voltages and currents used to construct the mode 
eigenfunctions are calculated at the interfaces of each layer. Depending on the boundary 
condition (electric or magnetic wall), either the y-mode voltage or the current is set to zero 
at the lower plate. If the value of kM is such that the voltage and current at the top plate 
satisfy the required boundary condition, then ku is a valid wavenumber, otherwise the 
value of k„ is iteratively adjusted until the boundary condition is satisfied. Note that 
this method is preferable to using the usual method of finding a resonance [4] in the total 
admittance found by summing the transmission line admittances in two directions at an 
arbitrary plane, because the voltage and current remain finite whereas the admittance 
may approach ±°°. The search for valid mode solutions is considerably more difficult with 
the presence of poles. 

The y-mode voltage and current at the end of the line representing the Ith layer are 
obtained from the voltage and current at the start of the line by 

Y = 

Vl+l = coskyid Vi - —sin Ay d 1\ 
Yl 

h+\ = coskyld Ii - jYt sinky[d Vt. 

with the signs consistent with the convention shown in Figure 2.2. 

For a given y-mode, the admittance matrix for a length, d, of transmission line 
representing layer / is 

-Yi (coth ayid+j cotßyid}   Y\ (cosech ay[d+j cosec ßyld} 

Yi (cosech ayld+j cosec/J^d) - Y/ (coth ay[d+j cot ßyldj 

where Y/ is the modal admittance of the Zth layer for kyj = ßy/ + jay/. 

Using the appropriate admittance, the transmission line parameters Vy(y) and Iy(y) are 
used to construct mode functions which represent the electric and magnetic fields of 

TE-to-y, TM-to-x, and TM-to-z modes. Similarly, the parameters Vy(y) and Iy(y) are used 
to construct mode functions which represent the electric and magnetic fields of the 
TM-to-y, TE-to-x, and TE-to-z modes. Because these parameters are used to represent 
propagation in the y-direction, they are termed the y-mode voltages and currents. 

The amplitudes of the transmission line voltages and currents used to define the y-mode 
mode functions are normalised to yield the following orthonormality relations: 

/;>>)< oo>=<5, 
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for TE-to-y, TM-to-x, and TM-to-z modes, 

hi 
y XJ' y 

£(y) 

for TM-to-y modes and 

\y"f;(y)I>(y)*dy = Sij 

for TE-to-x and TE-to-z modes.   In the above expressions, 8r/ is the Kronecker delta, 
denotes the complex conjugate, and y\ and yj+j are the lower and upper edges of the 

layer.   The phase ambiguity in the normalisation's allows the choice of V (y) to be 
y 

always real, and I (y) to be always imaginary, 
y 

i 11 

The orthonormality of V„(y) and I„(y) are used in Section 2.3.2.2 to calculate the mode 
coupling between adjacent regions in order to represent the entire two-dimensional cross 
section. 

2.3.2     Two Dimensional (Section) Analysis 

Section 2.3.1 has described the subregion analysis which is used to reduce the problem of 
analysing the various x-y cross-sections of the structure to the subregion level. The effects 
of individual layers are implictly included in the y-mode and w-mode propagation 
constants and mode functions. The remainder of the two-dimensional section analysis is 
concerned with combining subregions into sections. 

The two-dimensional analysis described in this section can be applied to a wide variety of 
waveguiding structures including dielectric guides, finline, microstrip, and coplanar 
waveguide. The results of the analysis of a range of waveguides are presented in Section 
3.1. The z-mode propagation constants, kz, can be determined, along with the modal 
fields. These fields can be used to calculate user-defined z-mode impedances, and to 
calculate the z-mode coupling between connected sections. This coupling is used to cascade 
the sections to construct the entire waveguide element. 

To fully describe the fields for modes propagating in the z-direction in a given section 
(z-modes), the transverse resonance technique is applied to an equivalent transmission line 
network representing propagation in the x direction. The modes represented by this 
network are referred to as x-modes because of their propagation direction. The previously 
determined y-mode fields which were determined using transverse resonance in the y- 
direction are combined as weighted sums to generate the fields of each z-mode in the 

section. The propagation constants of the z-modes are kz (m = 0, 1, ..., Nz), where Nz is 
the total number of z-modes to be considered. Ideally, an infinite number of modes exist, 
but this number must be truncated for practical purposes. 

The x-mode voltages and currents in the x-mode network defining the contribution of the 

nth y-mode fields to the total fields of the mth z-mode are V™n and f£n. Figure 2.3 shows 
the x-mode transmission line network for a simple ridged waveguide cross-section. Note 
that in general, the transmission lines representing individual x-modes in each region are 
now coupled at region interfaces. The boundary conditions at the sides of the cross-section 
determine how the x-mode transmission lines are terminated. The terminations are short 
circuits for an electric wall, open circuits for a magnetic wall, and the characteristic modal 
admittances (match) for an open boundary such as in a parallel-plate transmission line. 
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Figure 2.3    Ridged waveguide cross-section showing x-mode transmission line network 

The x- mode and y-mode voltages and currents are combined as follows to represent the 
components of the fields transverse to the x-direction 

E = Exux + Eyuy + Ezuz 

= Exux + ETuT 

where 

and 

NzNy 

m   n 

H = Hxux + Hyuy + Hzuz 

= Hxux+HTuT. 

where 

Hn 

NzNy 

m   n 

Nv and Nz are the number of transverse eigenmodes and the number of z-modes 

respectively. The modal fields ej and hj can be derived in terms of the y-mode voltages 
and currents using the expressions derived in Appendix I. The three choices of eigenmodes 
discussed in Section 2.3.1, ie, TE and TM to either x, y, or z, have features relevant to a 
discussion of the section analysis. The facility to choose from among the three possible 
types of mode functions is useful to characterise the z-modes in the structure, to allow 
various types of excitation to be applied in a straightforward fashion, and to improve 
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efficiency. In particular, each choice of eigenmode type has specific advantages in special 
circumstances. These advantages include: 

(i) For regions with layers of different dielectric constants (i.e. dielectric interfaces in 
the horizontal or x-z plane), TE-to-y and TM-to-y modes must be used. Of the three 
choices, only these modes have the property that no coupling occurs between different 
modes at dielectric interfaces, simplifying the subregion analysis of Section 2.3.1 for 
multilayered subregions. The lack of coupling arises from the orthogonality condition in 
the definition of the modes. 

(ii) To simplify the analysis of sections containing dielectric slabs with interfaces in the 
vertical or y-z plane, TE-to-x and TM-to-x modes can be used, since no coupling occurs 
between the TE and TM modes at dielectric interfaces that are normal to the reference 
direction for the modes. As discussed in Section 2.3.1, the subregions in the section must 
uniform, otherwise there will be coupling between TE and TM-to-x y-modes at layer 
interfaces. Coupling between mode functions in different subregions results only from 
discontinuities in the conducting boundary of the section rather than from changes in 
dielectric constants, making these modes an ideal choice for selected dielectric 
waveguides. 

(iii) For sections filled with a medium of uniform dielectric constant, TE and TM-to-z 
modes are uncoupled. Therefore, this choice of modes can lead to considerable savings in 
computational overhead arising from simplified mode coupling between subregions. In 
addition, the z-modes subsequently calculated using the x and y-modes in each sections can 
be readily identified as TE or TM-to-z, which can simplify the physical interpretation of 
the results. 

A number of two-dimensional transverse resonance analyses have been developed including 
those described in [12], [13], and [19]-[25]. Although varying significantly in detail, the 
general procedure is similar in all cases. 

2.3.2.1     Mode Function Derivation 

In this section, the components of x-mode fields transverse to the x-direction are related to 
the voltages and currents on the y-mode transmission lines. This step is essential for 
combining subregions into a complete two-dimensional section using the transmission line 
network discussed in Section 2.3.2. 

The general technique used to generate the mode functions follows Felsen and 
Marcuvitz [10], and is derived in Appendix I. The derivation of TE and TM-to-y mode 
functions is presented in this section, with the corresponding derivations for TE, TM-to-x 
and TE, TM-to-z modes included in Appendix II for completeness. 

TE-to-y modes 

Since ey = 0, the modal fields transverse to x are 

eT(y,z) = ez(y)e~jkzzuz 

hTM = üy(y)e-ikz\ + tiz(y)e-jkzzuz 

where ez(y), h (y) and hz(y) are field coefficients which depend on y only and the prime 

indicates a TE mode. Following the derivation in Appendix I, the transverse components of 
the modal electric and magnetic fields are related by 

kxYxhT{y,z) = CO£ 
v,v. 

1,+ • uxxer(y,z) 

11 
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Writing the field components explicitly and cancelling the e1kzz factor yields 

COS 
kxYx(hyuy+hzuz) = —£T 

(( <i        ^ 
+ kL 

VV a/ 
ezuy-Jkz^uz 

J dy 

Using 

By2 
+k< ez = 

(32      > 
—+k2 e7+(*2-*J)<4 

and choosing the arbitrary admittance factor to be 

Y   —& 
^ffl/J 

then the following relationships between the electric and magnetic field components 
transverse to x emerge 

hy = -ez 

and 

z   * ay 

The field quantities can be related to the voltages and currents on an equivalent 
transmission line network as shown in Figure 2.2 by setting 

ez = Vy(y) 

This allows the magnetic field components to be specified as 

hy = -v'y(y) 

and 

jkz d 
K = 

_ kzkQ  1 

-*f^w 

since, according to transmission line theory, 

2   v *yM 

d Vy(y) = -jkyXiy(y) = -jk0±Iy(y) 
dy Yo 
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TM-to-y 

Proceeding in a manner identical to the TE-to-y mode treatment and using  hy = 0, the 
modal fields transverse to x are 

hT(y,z) = h^y)e-Jkzzuz 

eT(y,z) = e"y(y)e~jkzzuy + e"z(y)e~jkzzuz 

where hz(y), eAy) and ez{y) are field coefficients which depend on y only and the 

double prime indicates a TM mode. Following the derivation in Appendix I, the transverse 
components of the modal electric and magnetic fields are related by 

kxZxeT(y^)=0) 

<y        e(y) 
>hT(^)xux 

Writing the field components explicitly and cancelling the e~J*z2 factor 

"    " " (Oil 
^x^x\ey**y "*"ezuz) = ~~2~ 

k0 W 

a   i   a   ,2 
By £t(y) By       j 

hzuy-jkz 
et(y)By 

u7 

A simplification can be made using 

a   i   a   ,2  + kfi 
dy £i(y) ay 

a     1    Bhz      2    h. 

J 'f+^A&^-^T^ dy £i(y) ^y    y £/O0 

= k2^ — Ku 

£i 

since e/(y) is constant within each layer. By choosing the arbitrary impedance factor to be 

kx(0£Q 

then the following relationships between the transverse electric and magnetic field 
components emerge 

it 

••    K 

and 

ez~   ,2 
—jkz    1    Bhz 

*«    %   dy 

The field quantities can be related to the voltages and currents on the equivalent 
transmission line network by setting 

h'z = Iy(y) 

This allows the electric field components to be specified as 
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p    = —  

and 

ez = 
-jkz  }_d_ 

kl    £/ dy 

k,h 

iy(y) 

= -^YQv"y(y) 

2.3.2.2    Mode Coupling 

The x-mode fields inside each subregion can now be expressed in terms of y-mode 
transmission-line voltages and currents. To complete the analysis of a complete section, 
subregions are stacked together horizontally and the coupling between x-modes in adjacent 
subregions is evaluated. This coupling satisfies the field continuity across the subregion 
interface shown in Figure 2.4. The evaluation of this x-mode coupling at subregion 
interfaces is discussed in this section. 

Mode functions in adjacent subregions will be coupled at discontinuities in the conducting 
region boundaries or dielectric constants between the two subregions. This coupling can be 
evaluated from continuity of the transverse electric and magnetic field components in the 
y-z plane of the discontinuity, and from the boundary conditions. Consider an interface 
between simple regions each consisting of a single subregion, where a change in the region 
heights or dielectric constants occurs as shown in Figure 2.4. 

y 
k 

interface 

\ 

EB3 

legion 

\ 
i 

£A2 

u 

hA 

Vl r       S 
X ii i 

Of) 

Region A Region B 

Figure 2.4    Simple region (or subregion) discontinuity 
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From the definitions of the x-mode voltages and currents stated previously in the 
introduction to Section 2.3.2, the field components in region A tangential to the 
discontinuity are given by 

NtN} 

VTA=HvZ»(x)en
TA(y,z) 

m   n 

KTA=HirwnTA(y,z) 

and similarly for region B 

iA     ^ z^-/ix 
m   n 

"X 
VTB=llV%»(x)en

TB(y,z) 
m   n 

'B      ^^'Hx 

m   n 

where the summation is over both TE and TM eigenmodes. The ratio between the number of 
y-modes in regions A and B is determined by the relative convergence criterion 

<     hB 

Relative convergence and its explicit role in the solution of characteristic equations 
encountered in general mode matching analyses is discussed in detail by Leroy [26]. 

The field matching at the discontinuity requires that 

ETB={ 
_ rE^ , over aperture 

0,      otherwise 

and 

H^   =^TB over aperture. 

By equating the modal expansions for the fields in regions A and B in the aperture, the 

coupling relations between the x-mode voltages V ^ (x) and V g (x), and between the x- 

mode currents I ^ (x) and I g (x) can be evaluated for the mtri z mode for all m. This 

procedure was followed to determine the coupling relations for each of the three types of 
basis modes, ie., TE, TM to x, y, and z. The coupling expressions were adjusted into a form 
that guaranteed conservation of complex power across the discontinuity for a finite number 
of mode functions in each region, while still maintaining the field matching for the ideal 
case where an infinite number of mode functions are used. In the following section, the TE 
and TM-to-y mode function coupling expressions are derived. The procedure is to first 
match the two transverse components of the electric field (the y-component and the z- 
component), using the appropriate orthonormality relations to simplify the expressions 
and then repeat the procedure for the two transverse components of the magnetic field. The 
corresponding derivation for TE, TM-to-x and TE, TM-to-z-modes is given in Appendix III. 
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Electric Field Matching 

y-component 

M™ r"
n ,   ,        M™ T"

P
 t   \ 

% v"mn V^ = y v"mp V^ 
7   Bx   eB(y)     ~   Ax   eA(y) 

„n      „. 
After multiplying both sides by Iß (y)    and integrating along the region interface 

extending from y\ to yu-yi + hA as shown in Figure 2.4, the orthonormality relation 

JX«77^W'*-*, 
allows the coupling between the x-mode TM voltages to be determined 

where A^ = J '      dy. 
ex(y) 

z-component 

NB     .„„   .„ «B    um, JL      ,mn    <n JL   kmQ)£r\       "mP       "P 

*>       k"PB 

M™ M™ 
"A       ,mi    ,i "A     kmCO£(\     "mJ    "J = 1 VAxVAy(y)- X ^~^VAx VAy(y) 

'" J        kuJA 

,n      „. 
After multiplying both sides by Vg (y)   and integrating along the region interface, the 

y 
orthonormality relation 

ih
0VBy(y)VBy(yfdy = 8ij 

allows the coupling between the x-mode TE and TM voltages to be determined 

N™ V "B    u™r— ....  yu 

VBX - L ^r-yBx J vBy(y) vBy(y)dy 
P    

k"pB yi 

I VAx \ VBy(y)*VAy(y)dy- £ ^Ä ^ J V^ÜO V^yrfy 
i y, j       kujA y, 
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which can be written using suitably defined matrices F, C, and D as 

N™ NTE N™ 

where 

kmCD£n 
y" 

UPB   y> 

Cni'-jvl(yyvi(y)dy 
yi 

k]aen 

k. 
^j-^K(yrv:yydy 

In anticipation of later modifications to ensure complex power conservation across the 

region interface, a matrix 0 is defined by 

kuPA yi 

Magnetic Field Matching 

y-component 

Nf Nf 
2iAxVAy(y)=2IBxVBy(y) 
n p 

,n       t 
After multiplying both sides by VA (y)   and integrating along the region interface, the 

j 

orthonormality relation 

\yuyiAy(y)<(y)dy = 8ij 
Jyi        y y 

allows the coupling between the x-mode TE currents to be determined 

N y 

iA:=±C/K(y)<vl(y)dy 
P y, 

where 

=lcp;cx 

Cpn=]vl(y)Vl(y)dy 
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z-component 

M™ MTE 

_ö_       „mn iin _iL    t-     / ■Äi     "m" "» x^,   k    (DUn   ,mP 'P 

X 'A, (*)'Vy)+ I ^r0-^ (*>Vy) 

/VrM NTE 

•ß,     «mi »i JL,   kmCOllr\   ,mJ <J 
= 1 hx (*)iBy(y)+ 1 ^P-iBx Why(y) 

< J       kuJB 

"n        * After multiplying both sides by IA (y)   and integrating along the region interface, the 
y 

orthonormality relation 

\hC (y)—^-iA<y)*<ty = 8u J° y   £A(y)  y 

allows the coupling between the x-mode TE and TM currents to be determined as 

r  \ k?wQrVAy(y) iAy(y) 

p   k"PA      yi      AW 

•      x J        eA(y) k £A(y) 

which can be written using suitably defined matrices JT, A and ß as 

NT
A
E NT

B
M .     N™ 

J* ■ mn D «mi -Ü. 
1AX + X WAX = I A <"7*, + X Ay7*, 

I 

where 

j,>,'(';w^;,w 

"    y      ^*   w'J 

B =
k>ßo]I*Sy)I°Sy)

dy 

In anticipation of later modifications to ensure complex power conservation across the 
region interface, define a matrix G is defined by 

GnP=-^p-j hy(y) hy(y)dy 
kupB yi 
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2.3.2.3     Complex Power Conservation 

The condition that the transverse electric and magnetic fields be exactly matched across 
region interface discontinuities will only be satisfied in the ideal case where an infinite 
number of x-modes are used. For practical purposes, the number of x-modes must be 
truncated to a finite number, so that exact field matching cannot be achieved in general. 
However, a physical constraint that power flowing through the region interfaces must be 
conserved can be enforced on the field matching for an arbitrary finite number of x-modes. 
That is, the power transmitted in the x-direction from region A must equal the power 
received in region B, and vice versa. Both the real and imaginary components of the power 
flow are matched at the interfaces to enforce this most fundamental physical constraint on 
the x-mode coupling at region interfaces. This general procedure has previously been 
applied to a two-dimensional mode matching analysis by Mansour and MacPhie [27], 
although only in homogeneous structures. Omar and Schunemann [28] have shown that 
conservation of complex power can be applied to inhomogeneous structures, and that it 
follows directly from field matching. This conclusion has been verified by this work. 

By constructing column vectors for the x-mode voltages and currents for the m* z-mode 
(with the TE and TM components separated), and using the matrices defined in 
Section 2.3.2.2, the coupling expressions from the field matching can be written in matrix 
form as 

I -F 

0 I 

I 0 

r I 

The power flow through the region interface on either side of the discontinuity for the mth 

z-mode is determined from the fields in region A and region B using the x-mode voltages 
and currents as follows 

yu 

PZ = lE?AxB?A   -uxdy 
yi 

N*N} 
tyu 

= XX"£'TK*,,e •»** 
n   p 

yu 

yi 

P2x = lE?BxH?B  .uxdy 
yi 

N*N* "y "y *y» * 
ZXVS-IE /«J.xhf    .uxdy 
n    p yi 
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For any given region, ej and h^* may be split into TE and TM components and the integral 

evaluated using the previously defined mode functions as follows 

yu * yu * * {    <n <p f    >n <p <P 
jerxhr   •uxdy= )ezuxx(hy   uy + hz   uz)]»uxrfy 

yi yi 

e       <n \ p        * 

= J ~ez (y)^ (y) dy 
yi 

y 
I»       iW i p * 

= J Vy (y)Vy (y) dy 
yi 

= 8np 

yu nn       * yu   nn       nn        n* 

J e'y xhT   • ux dy = j [(ey uy+ezuz)xhz   uz]• ux dy 

yi yi 

t   «I     «p    * 
= j[ey(y)hz (y)]dy 

yi 

JVy^yM dy 

y,      £r(y) 

= Snp 

yu * yu * * f    „n <p r        «n «n <p <p 
J er xhr   »ux dy= J [(ey uy+ez uz)x(hy   uy + hz   uz)]»uxdy 
j/ yi 

y 

= )[ey(y)hz (y) -ez {y)hy (y) ]dy 

yi 

k er(y) k Kup    yi r Kun     y, 

I»       » n* j.    in n p 

I eT x hT   •uxdy = 0 

yi 
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The coupling between the modal fields in regions A and B is required to be such that the 
power coupled from region A to region B is the same as the power coupled from region B to 
region A. For region A 

PA
1
    = Ax 

JA, 

„m 

+ r 
I r+-4) VA, 

LVAJ L ° i J 
- ,m- 

°x 
c ß+l ['! r,l i   ; r+-4> 

im" 
VA* 

„m 

L ° A   J [o ; .J i 
L o  ,  i J 

„m 
LVAJ 

t*x 

tr 
c ß+-cr+ T  i     r+V ■ r  ,m_ 

VA, 

um 

LJBJ L ° A I o: .. „m 

JLVAJ 
+r 

c ß+-C<D 
r   tm" 

VA, 

LJBJ L ° A 
„m 

LVA_ 
and for region B 

#*    = 

ax 

tr 
i G+-F VB, 

LJBXJ L ° I   J 
„m 

VR 

tr 

i G+-F I F Tc !"1 VA, 

JBJ 0 I   J 0 I 0     |    A KJ 
tr 

I G+ 1 c -D VA, 

„m 
JBJ 0 I   J 0 A   J 

„m 

-
V

AJ 

J
R B* 

tr 
c G+A-D 

■ r ,m 
VA, 

„m 

-
J
BJ 0 A JLVAX. 

So to ensure conservation of complex power for an arbitrary number of x-modes, the 
following substitutions must be made 

ß  ->G+A 

D ->C<D 

For these substitutions to have physical relevance, they must be automatically satisfied 
for an infinite number of modes, showing that the fields on each side of the discontinuity 
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will still match if infinite modes are used. This can be shown using the completeness of an 
infinite set of eigenmodes as follows 

rGAi    = V kz ^o f _°Z b. dy [ -Z 2! di 
U
"B yi 

efi(y) 
yi 

,TM -"q 

£A(y') 

=-£ 
kmcou^y^B (y) iA (y')NX iB (y)iB (y) Kz ^9. f f Jl 2Z £ J2. p. dydy' 

unB   yi yi 
£A(y') £ß(y) 

-^2— J——rrr— # 
M«ß   >7 

it 

£A(y') 

ßJ        as required. 
mp 

Similarly 

ic*W= X J Wy) V^^J Vy) Wy)dy 

4 yi 

k™coeQ 

,2 

yuyu 

U
PA  yi 

NlE 

j J i£ (>)* < <y) X vl (^ )* v? ( J) * # 
U
PA yi yi 

k™0)er) yr     >n        *    ,.p 

"PA yi 

= Dnp   as required. 

The final form for the coupling which guarantees conservation of complex power for any 
number of x-modes in each region is therefore 

I -F 

0 I 

I 0 

r I 

,m 

„m 

L   Bx. 
,m" 

*A* 

„m 

c -CO 

0 A 

c+ 0 

A+G A+ 

,m 

JLVA,J 
,m 

Ox 

„m 

L BXJ 

2.3.2.4     Constructing Admittance Matrices 

So far, only simple region interfaces have been considered, i.e. regions that do not contain 
subregions separated by conducting boundaries. At this point, it is necessary to consider 
more complex regions consisting of more than one subregion such as shown in Figure 2.5. The 
procedure is to calculate the two-port x-mode admittance matrices of the subregions in a 
given region, calculate the coupling matrices for the interfaces between connected 
subregions, and then combine the admittance matrices and the coupling to produce a new 
admittance matrix for the region which now includes the coupling to other regions. In this 
manner, a series of multiport admittance matrices can be constructed to represent each 

22 



DSTO-RR-0027 

region in a given section. When cascaded together in the correct manner, these admittances 
represent the entire section under consideration. Note that the independent subregions in a 
given region are vertically aligned but separated by conducting metal surfaces, so that no 
y-mode coupling exists between them. 

subregion 
*9 

*2 

imetal ■ 

T 
<Sn 

imetal 

r interface 

% % 

region A region B 

Figure 2.5    Complex region interface with independent layers 

The coupling expressions relating the x-mode voltages and currents for the mtn z-mode 
between connected subregions as derived in Section 2.3.2.3 are used in the form 

LVBxJ |_ PV    ,     0 

for "step-up" transitions (height of subregion A smaller than height of subregion B), and 

'< 

for "step-down" transitions (height of subregion A larger than height of subregion B). Pi 
and Py are the current and voltage couplings, respectively. These coupling expressions are 
listed in Appendix IV for the various choices of eigenmode types in subregions A and B. 

The coupling expressions above show that currents in the smaller subregion can be 
expressed in terms of currents in the larger subregion, but not vice versa. This is because of 
the lack of a suitable constraint on the tangential component of the magnetic field of the 
larger subregion on the aperture wall. Since magnetic field matching can only be 
considered over the aperture itself, it is only possible to determine the currents in the 
smaller subregion from the currents in the larger region. To determine the currents in the 
larger region from the currents in the smaller region requires the nonexistent magnetic field 
boundary condition on the aperture wall. 

Such a boundary condition does exist for the electric field however, namely that the 
tangential electric field is required to be zero on the aperture wall. This condition is used 
to derive the voltage coupling relating the voltages in the larger subregion to the voltages 
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in the smaller subregion. However, if the tangential electric field must be zero on the 
aperture wall then an arbitrary electric field is not allowed in the larger subregion. 
Therefore, it follows that a coupling expression relating the voltage in the smaller 
subregion to an arbitrary voltage in the larger subregion cannot be defined. These 
considerations are also discussed in [28]. Note that it is possible to numerically invert the 
coupling matrices to circumvent this problem if the same number of x-modes are used in 
each subregion. However, not only does this approach violate relative convergence, it also 
leads to a very ill-conditioned formulation. 

A subregion with a two-port modal admittance matrix Ys contained in a given region 
which is coupled to M subregions in a region on the input (left) side and N subregions in 
another region on the output (right) side is shown schematically in Figure 2.6.   The 

voltage and current couplings at the mth input port are written as Py   and   Pj 

respectively, and the corresponding couplings at the nth output port as Py   and  Pj 

respectively. 
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Figure 2.6    Multiport admittance block constructed from two-port subregion coupled to other subregions 

The voltages at the parallel outputs of the coupling ports sum to yield the total voltage at 
the subregion admittance ports. Therefore, using the x-mode voltage and current coupling 
expressions, the voltages and currents at the input and output ports of the subregion were 
given by 

M 
Vl

s = y\VyVp for" step - up" transition, undefined otherwise. 
m 
N 

^=Yp" Vn for" step - down" transition, undefined otherwise. 

jtn _ r>m ji 
*i   -rlt

lS 

o        I0 S 

for" step - down" transition, undefined otherwise, 

for "step - up" transition, undefined otherwise. 

The restrictions discussed previously relating to the boundary transitions that may be 
represented by the coupling expressions do not, in practice, restrict the geometry of 
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structures that can be analysed. Any arbitrary cross-section can be divided such that all 
the region couplings are included at the input or output ports of the subregion admittances 
as required. Step-down transitions are assigned to the output of the adjacent subregion to 
the left, while step-up transitions are assigned to the input of the adjacent subregion to the 
right. 

The current at the input and output ports of the subregion, Ig and Ig, can be expressed in 

terms of the input and output voltages, Vs and Vg using the two-port subregion admittance 
as 

4 = YV   Vi + Y,  V°s 
■>00 01 

/? = Yo  VUYO V°S ° ^10° JU    J 

Therefore, the current at the m* input port can be written as 

M N 

Similarly, the current at the nth output port is given by 

M N 

S=*?.**.Z'P,vr+p&YSii5:pf#v; 

Therefore, a multiport admittance matrix which represents both the subregion and the 
coupling to regions on each side containing multiple subregions can be defined 

-$- rvn 
if tYMool | [

Y
MOI] vf 

A JYMIQ] ! fYMlll_ v° 

UJ -VN- vo 

V    nP - I
MQO ~ P/Y,  P » 

where 

v   nP — Vn V     x*P rMio ~r/oISi0
rVl- 

2.3.2.5    Cascading Admittance Matrices 

The admittance matrices derived in Section 2.3.2.4 which contain both the subregion 
modal admittances and the associated couplings are cascaded to represent an entire 
section. The cascading of two multiple-port admittances YA and Yß to form a single 
multiple-port admittance, Yc, as shown in Figure 2.7, is similar to simple 2-port 
admittance cascading. 
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Figure 2.7    Multiport admittance cascade 

The currents at the input and output ports for admittance YA are related to the voltages by 

N N1 

P 9 
N AT 

p q 

and similarly for Yß 

JV" 

N1 N" 

In matrix form 

I = YAooV + YA01V 

r=YAl0v+YAllV: YBOOV+YBOIV" 

I" = YBl0V+YBnV" 

Substituting for I' 

YAii+YB00 V = - YAIOV+YBOIV; 

Defining 

Y-     = YAll + YB00 
-1 
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and substituting for V allows I, and I" to be determined in terms of V, and V" 

1 = Y     * Aoi*inv*Boi* YA00    YAoiYinvYAio 

YBn ~ YBloYinvYBoi r_ -YBl0YinvYAl0v+ V" 

In matrix form 

I" 

I". 

Ycoo I Ycoi 

.Ycio | YCH_ 

V 

.V" 

[YA00 " YA01 Yinv YAIOI  | " YA01 
Yinv YB01 

- Yßio V;nv YAIQ I   IYBll - YBlO Yinv YB0ll_ 

V 

LV. 

2.3.2.6    Junction Admittance Calculation 

By applying the multiport admittance cascading discussed in Section 2.3.2.5 in an 
appropriate manner, the section to be analysed can be reduced to two multiport 
admittances YL and YR representing the structure on the left and right sides of a junction 
plane. The position of the junction plane can be arbitrary, but is usually set at the left side 
of the region containing the subregion with the minimum number of y-modes. This 
subregion is termed the junction subregion. Selecting the subregion with the smallest 
number of y-modes improves computational efficiency. This situation is shown 
diagrammatically in Figure 2.8. 

A two-port admittance matrix Yj for the junction was determined in order to apply 
transverse resonance to the two-dimensional section. This two-port is constructed from the 
admittances "seen" by looking to the left and right of the junction plane. By definition, the 
junction subregion is at port nj of YR and port nj of YL. From the definition of Y-parameters, 
the current at the n"1 port of YL is given by 

P 

and similarly the current at the n**1 port of YR is 

InR=h7VPR 
P 

Connecting all the ports of Yj and YR except for the junction port, nj, leads to 

In
L = -In

R  and VI ■■ V^    forn^n I- 
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Figure 2.8    Reduction of cross section to 2-port junction admittance 

The input and output currents for the junction port, IL
J and IR

J , are given in terms of the 

voltages at the other ports by 

v=hijpvpL 
p 

= Yn
L
jnjVn

L
J+   ^YLPyL 

p±nj 

= Yn
L
jnjVn

L
J+ ^Yn

L
jPVp

R 

p*nj 

and 

In
R'=Y%njV%+ J,Yn

R
jPVP 

P*nj 
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Now consider the currents at the n* port of Yi for n^nj 

N 

P*nj 

and similarly for YR 

N 

P*nJ 

Therefore, since l^ — — IR for n*nj, 

N 
[Ynnjynj + ynnjyg] = _ J^yJP + Yf}VP

R 

p±nj 

Define 

where 

Y-     = A" 1 inv     A 

Anp=[YnP + YnP]        forn,p*nj. 

so that for n*nj 

N 
VnR = -lYZiYP

L
njVn

L'+Y^Vn
Rn 

p*nj 

Hence, substituting for VR (n^nj) 

N      N 
YnJnJ    y  y YnJpyPqYqnj 

p*nj q±nj 
vn

L
J- 

p±njq±nj 

v% 

*=- 
p±nj qtnj 

v"L' + 

N      N 
YnJnJ _ y  y YnJpY?qYqnj 

p±njq*nj 
VRJ 

So the 2-port admittance matrix representing the junction is 

YJ00   |   YJ01 

,YJ10   I   YJll_ 

v? 

KU 
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where 

Ym = Ynjnj _  £    j, Yl»Y£ff> 
p*njq*nj 

YJOl = 

N     N 

- y y YnjpY?qYqnj 

p±njq*nj 

YJ\0 = -i firrfiif' 
p±nj q±tij 

YJn = 

N      N 
VnJnJ        V     V vnJPYPlYqn-' *R      ~  Za    2L,1 R    Iinv1R 

p*njq*nj 

If port nj of YL and YR are connected together and for there to exist a solution in the absence 
of an excitation source corresponding to a mode of propagation, then 

#=-#™*v2' = v;' 
Therefore 

«/ 
[^oo + ^oiW=-[^io + ^ii^ 

Hence, a physical value for k™ is obtained when the following transverse resonance 
condition is satisfied 

\?JOO 
+
 
Y

JOI 
+
 
Y

JIO 
+
 
Y

JU wR 
nj =rYsum'\ynJ 0 

2.3.2.7    Numerical Techniques for Solving the Transverse Resonance Condition 

To complete the section analysis, the propagation constants for the z-directed modes, or 
z-modes, must be determined. This is achieved by performing an iterative search for kz 

values which satisfy the transverse resonance condition derived in Section 2.3.2.6. Two 
markedly different search methods were used here to determine the kz values satisfying 
the transverse resonance condition, depending upon whether the required z-modes were 
propagating or evanescent (purely real or imaginary kz), or complex (complex kz). 

Propagating or evanescent modes 

To find the propagation constants for purely propagating and evanescent z-modes, an 
iterative search for both zeroes in the determinant and minima in the minimum singular 
value of [Ys"m] was conducted by decrementing kz from some initial value. The minimum 
singular value of [Ysum] was found using matrix singular value decomposition [29], a 
technique first applied to the analysis of two-dimensional microwave and millimetre- 
wave structures by Labay and Bornemann [30]. Figure 2.9 shows a typical z-mode solution 
corresponding to a minimum (zero) in the minimum singular value and a zero in the 
determinant of [Ysum]. Note the determinant pole located close to the zero crossing. This 
was a common feature of the behaviour of the determinant near z-mode solutions, and 
prompted the use of the more well-behaved minimum singular value. It must be noted that 
the minimum singular value was not entirely reliable on its own because of extremely 
narrow minima sometimes encountered. Such minima cannot be detected unless 
prohibitively small kz search step sizes are used. For this reason both the determinant 
and the minimum singular value of [Ys"m] were used to ensure the reliable identification of 

30 



DSTO-RR-0027 

valid kz solutions. Instances where both the determinant and the minimum singular value 
were not well-behaved near a given z-mode solution were rare. 

The following strategy was adopted for finding propagating and evanescent z-modes: 

where £r       is the maximum (i)       Start with a value of kz no larger than k(\J£r 

dielectric constant in the section. Do a coarse search by stepping in the direction of 
decreasing k2 with a specified step size. Look for minima in the minimum singular value or 
a change of sign in the determinant of [Ysum]. Closely-spaced zero-pole pairs in the 
determinant which may not result in a change of sign over a coarse step can also be 
detected. 

(ii) If a possible solution is detected during the coarse search, a prediction of the 
location of the solution is made and a fine search initiated over a range of one coarse step 
either side of the estimated position of the k2 solution. The fine step size is typically set 
to 1/10 of a coarse step. As for the coarse search, look for minima in the minimum singular 
value or a change of sign in the determinant of [Ys"m]. 

Figure 2.9    Typical z- mode solution 
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(iii) If a possible solution is detected during the fine search, an attempt is made to use a 
quadratic fit to the minimum singular value of [Ys"m] to estimate the position of the 
solution. If this kz estimate corresponds to a minimum in the minimum singular value then 
an iterative procedure based on the Brent's method is used to refine the kz value [31]. 
Otherwise, a quadratic fit is performed on the determinant to estimate the position of a 
possible zero crossing. If a determinant zero crossing is detected, then the kz estimate 
obtained is refined using a procedure based on the method of false position [32]. 

(iv) Before acceptance of the k2 value, a final check is made to ensure that it 
corresponds to both a zero crossing in the determinant and a minimum in the minimum 
singular value of [Ysum\. If the solution is valid, the next z-mode is sought using the same 
procedure. If the fine search is not yet at the end of its range (one coarse step beyond the 
original estimate of the solution) then it is continued to this limit in an attempt to detect 
other solutions close to the last solution. This situation occurs often in structures with 
almost degenerate z-modes. 

For uniform sections, values of ko corresponding to the z-mode cutoff frequencies can be 
found rather than the z-mode propagation constants at a given frequency as described 
above for general structures. The search algorithm was identical to the kz search. For the 

mth z-mode, the cutoff frequency/™ was used to calculate the propagation constant kz at a 

given frequency using the simple relation 

Ü?=Mer-k$t m 

where 

m 
2TT/        ,   . 2/r/c U     _  J_       an(l       V -  i-k_ 

c m        c 

Since the z-mode cutoff frequencies were independent of frequency for uniform sections, 
determining the cutoff frequencies or kz values at one frequency was sufficient to analyse a 
number of frequencies. The kz values obtained at the first frequency were readily scaled for 
any number of different frequencies, so that a z-mode search was not required for more than 
one frequency. This substantially improved computational efficiency when analysing 
broadband structures. 

Complex modes 

For finding complex z-modes, ie., z-modes with complex kz values, a contour integration 
technique based on Cauchy's Theorem is applied in the complex k2 plane to search for 
zeroes of the determinant of [Ysum]. This technique consists of an integration around 
overlapping circular contours in the complex kz plane to determine the number of zeroes and 
their location within the contour. This procedure was initially developed for solving 
matrix equations by Delves and Lyness [33], and applied to the analysis of microwave 
structures by Sorrentino and Lampariello [34]. 

Cauchy's theorem states that 

"    2ni[    f(z) 
Nz Np 

1=1      1=1 

dz 

32 



DSTO-RR-0027 

where Nz and Np are the number of zeroes and poles of the function f(z) of the complex 
variable z within the contour. z\ is the position of the itn zero and p[ is the position of the 
i* pole within the contour. Interpolation using a polynomial of order 4 was used to 
estimate the derivative f'(z) from values of the function f(z). By setting n=0, So = Nz - Np 
is determined. Provided there are not too many zeroes or poles inside the contour, then 
with a sufficiently high order of n, the various z\ and pi can be determined analytically. 
Appendix A.5 describes analytic techniques for extracting the zero and pole locations from 
the moments Sn for a limited number of poles and zeroes within the contour. Larger 
numbers of poles and/or zeroes were not considered because of numerical accuracy problems 
which stemmed from the fact that, in practice, most of the zeroes and poles occurred in 

closely-spaced zero-pole pairs, so that z. - p. was small for n = 1, 2, 3, ....   This was a 

fundamental limitation on the effectiveness of this technique. However, complex modes 
were generally few in number and widely-spaced in the kz plane, allowing this method to 
be used effectively. If too many zeroes or poles were inside a given contour, smaller 
contours could be used to cover the same area in the complex kz plane. 

2.3.2.8     Section Voltage and Current Calculation 

Once the values of k2 are found for each z-mode for m = 0 to Nz, the voltages and currents 
on the equivalent transmission line network representing propagation in the x direction 
can be determined. These can then be used to calculate the actual electric and magnetic 
fields in the cross-section for each z-mode, and hence the z-mode coupling at section 
interfaces. This in turn allowed sections to be cascaded together to construct the complete 
waveguide element. 

The first step is to use the transverse resonance condition to solve for the modal voltages at 
the junction 

yyoo + y-/oi + y^io + y^ii vj'- Vj'=0 

This equation is sufficient to solve for VRJ to within an arbitrary factor.  This is accounted 

for by allowing one of the modal voltages to be set to 1. If voltage Vp is set to 1 and 
removed from the unknown voltage vector, then the p4*1 column of [\sum], can be taken to 
the right-hand side, and the resulting equation solved for the other voltages using a least 
squares technique. The solution is ideally unique, but the least squares approach ensures 
robustness to numerical error. In matrix terms, the equation to be solved is 

'vsum 
Y00 ■ •TcKp-ijYiKp+i)- 

.sum 
'ON 

.sum     vsum    ^sum .„sum      |_   Vvf 
■-YN0 Y N(p-l)YN(p+l) YNN~I w 

v? 
— vsum — 

Y0p 

= 

vsum 
Mp-l)p 

vstnn 
Y(p+l)p 

v3- ^   YNp   -1 

If this equation is written as A.V = b, then the least squares solution would be found by 
solving A+A.V = A+.b using standard techniques for linear matrix equations [35]. 

The modal voltage matrices at the other ports in parallel with the junction, V11 (n^nj), are 
found from the junction voltages using this equation from Section 2.3.2.6 
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Vn=   XCv^f +YP
R
nJWnj 

p±nj 

where N is the number of ports in the junction plane and 

Ifrv^L + V1 

The currents at all of the ports in parallel with the junction were determined using YL 

inL=hiPvP=-inR 
p*nJ 

Once the voltages and currents at the ports in parallel with the junction ports were found, 
the voltages and currents in the remainder of the cross-section could be determined. For a 
step-down discontinuity to the left of the junction plane, the voltage coupling could be used 
to determine the voltage on the left side of the discontinuity from the known voltage on 
the right side. The current to the left of the discontinuity was calculated by evaluating 
the total admittance of that portion of the structure from the left side boundary up to (but 
not including) the discontinuity, Yieft, so that I = Yieft V yielded the required modal 
currents. For a step-up discontinuity to the left of the junction plane, the current coupling 
could be used to evaluate the modal currents to the left of the discontinuity from the known 
modal currents on the right side. As for the step-up case, the admittance of the structure to 
the left of the discontinuity, Yieft, was calculated.  The modal voltages on the left side of 

the discontinuity were subsequently determined using V = YjeftI. 

Once the voltage and current at the right edge of a region Vright and Irfeht were known, it 
was a simple matter to calculate the voltage and current at the left edge Vieft and lieft 
using 

Vleft = Y10 fright _ YllYright] 

'left = Y00Vleft + Y01Vright 

where Y is the subregion admittance matrix. Note that Yij (i,j = 0,1) are diagonal. The 
next discontinuity (if any) is located at the left edge of the region, so this procedure is 
repeated until the left boundary of the structure is reached to determine the x-mode 
voltages and currents for the portion of the structure to the left of the junction plane. 

The modal voltages and currents to the right of the junction plane are calculated in a 
similar fashion, the differences being that the voltage coupling was used to calculate the 
modal voltages across step-down discontinuities, while the current coupling was used at 
step-up transitions. The admittance of the portion of the structure to the right of the 
discontinuity, Yright, was then used to calculate the voltage or current as appropriate. 
Once the voltage and current at the left edge of a subregion was known, the corresponding 
voltage and current at the right edge were determined using 

Vright = YÖl ['left ~ Y00Vleft] 

'right = Y10Vleft + YllVright 

This procedure was repeated until the right side boundary of the structure was reached. 
The x-mode voltages and currents across the entire two-dimensional cross-section were then 
known. 
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2.3.2.9     Section Field Calculation 

The modal voltages and currents were used to calculate the fields in the cross-section, as 
well as the total power flowing through it. The y and z components of the fields have been 
derived previously in order to evaluate the coupling at region interfaces. To complete the 
field calculations, the x component of the electric and magnetic fields of the m^1 z-mode 

were derived. E x was determined from H „ and H z, and H x was determined from E v and 

E2 using Maxwell's equations, with the TE and TM field components separated as follows 

j(D£0erE?=VxHm»u 

N1 

=2 
n 

dh7 (y)    .,   •"    . 
-J~ + ]kzhy{y) 

dy J 

N" dhz (y) 

dy 
+ jkzhy (y) Ix   (x) 

and similarly for H x 

iß)/i0i/,
m = -VxEm.Uj 

AT 

-S 
n 

dez (y) 
dy 

+ jkzey (y) 
N" 

Vx   (x) + X 
n 

de7 (y)     .,   •■«    . 
-^- + Jkzey (y) Vx   (x) 

The total power P z flowing through the cross-section in the m1^ z-mode was determined by 
integrating the z-directed power density over each region and summing over all the regions 
in the cross-section 

ff = J J (E?Hf - EfH?)dy dx 

All three field components are listed in Appendix VI for TE and TM-to-x, y, and z modes, 

together with the z-directed power.  For each z-mode, V x   and I x   were normalised by 

setting P2 to 1 for propagating modes (kz real), and j = y—l for evanescent modes (kz 

imaginary) and complex modes (k2 complex). 

2.3.3     Three Dimensional (Element) Analysis 

There have been a number of mode matching methods developed to treat 
three-dimensional discontinuities. Early work concentrated on discontinuities between 
rectangular waveguide sections [36]-[42], while later efforts have been directed toward 
more complex structures based on finned waveguides, cross-irises, or T-septa [43]-[50]. 
Generally, analysis has been restricted to relatively simple, homogeneous structures. The 
more general derivation presented in this section seeks to extend the capability of the 
mode matching technique beyond these limitations to allow accurate modelling of 
microstrip, finline, and dielectric waveguide discontinuities with a single, generic 
analysis. 

The two-dimensional section analysis described in Section 2.3.2 yields the z-mode 
propagation constants and modal fields for a given number of z-modes in each section of the 
structure to be analysed. It remains only to cascade these sections together (in the z- 
direction) to represent the entire waveguide element. To perform this cascading, it is 
necessary to first calculate the coupling between z-modes in adjacent sections using the 
modal fields calculated according to the expressions in Section 2.3.2.9.   Combining this 
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coupling with the scattering matrices for each section allows the scattering parameters of 
the entire element to be determined. 

2.3.3.1    Mode Coupling 

The z modes in adjacent sections are coupled at the interface between the sections. This 
interface represents a discontinuity in the section boundaries or dielectric constants. The 
z-mode coupling can be determined from continuity of the tangential electric and magnetic 
fields in the (x-y) plane of the discontinuity and from the boundary conditions. Consider a 
step change between two sections A and B of an element as shown in Figure 2.10. 

section interface 

Figure 2.10  Section interface 

Using the two-dimensional analysis discussed in Section 2.2, an equivalent z-mode voltage 
and current can be defined such that the fields tangential to the z-direction in sections A 
and B are given by 

E,A=Xv£U)e,™(xoO 

NC 
^tA=^Az(zK(x,y) 

N. 

m 
B 

VtB = 2vn
Bz(z)e?B(x,y) 

N 
^tB=l^Bz(zK(x,y) 

where the summation is over both TE and TM eigenmodes and propagation is assumed to be 
in th z-direction. 

Assuming that the boundary of section B entirely includes the boundary of section A at the 
interface, the field matching at the discontinuity requires that 

E'*-{o 
Ef ,   over aperture 

otherwise 
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and 

Hf   =Hf     over aperture 

By equating the modal expansions for the fields in regions A and B in the aperture, the 

coupling relations between V™ (z) and VB (z), and between I™ (z) and IB (z) can be 

determined. This procedure was followed using each of the three mode types, ie., TE, 
TM-to-x, y, and z. The coupling expressions were formulated in such a manner as to 
guarantee conservation of complex power across the discontinuity for a finite number of 
z-modes in each section. In this section, the z-mode coupling using TE and TM-to-y 
eigenmodes is derived. The corresponding derivation for TE and TM-to-x and TE and 
TM to-z modes is given in Appendix A.7. 

Electric Field Matching 

x-component 

xrTE     m                                                          N™ 
"B    k^COUr)   ,mn            ,n              ly*       „mp            up 
2 -^F-hx (x)VBy(y)+ £ IBx (x)VBy(y) 

m "       kUnB                                       P 

I -Z^P-Ux(x)VAy(y)+ I lAxMVAy(y) 
i [   J        k»JA                                          k                                 J 

Both sides of Equation 2.1 were multiplied by 

NT
B
E 

x^l    'rs      *    "s       * 

£ V*> vBy(y) 

(2.1) 

Integrating over the aperture in the x and y directions and applying orthonormality of the 
y-modes yields 

where 

AVBi=BVA; 

lmn = S 
P 

^^0   f  ."V ""P        * 
—S— J hx W

!BX (*) dx 
UPB     Xi 

N TM yu "       c    »nq <mp        *        r     «q <p * 
+ X J hx (x)hx (x) dxj VBy(y)VBy(y) dy 

**i yi 
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NlE 

P 

NI
E
 IJI   ---   x 

14   k^CÖUr)   1   ,nq ,mp        * f      "7 <P *   , 
S "^ \ Ux WBX W dx\ VAy(y)VBy(y) dy 
4      k"qA     xl yi 

NT
B
Mxu yu 

"      f    „nr <mp        *        r     "r 'P  ,   . *   . 
+ £ J //i, (*)/*, (*) ä J VBy(y)VBy(y) dy 

xi yi 

y-component 

N?       N™ N?       N™ 

L BZZ.   B,y>eB(y)    j> hj<   h      SA{y) 
m n 

Both sides of Equation 2.2 were multiplied by 

NlM ur * 

1 -Ilhr1vBr (x) iBSy) 
s       k< 

•x uy 
■USB 

(2.2) 

Integrating over the aperture in the x and y directions and applying orthonormality of the 
y-modes yields 

HV5z=JVA 

where 

\jTM    m * 
No    7rm ß    k7n  (0£r\   (     «np «mp       * 

P KUpB       X[ 

J™ = I   I -^T^j VAX (*)VBX (*) dxj y 
' mn 

P      q       KupB    Xl 

In addition, multiplying both sides of Equation 2.2 by 

yi 
*A(y) 

■dy 

Nf 
2

V
BM) lB(y) 

and integrating over the aperture yields 

PV„ = QV, 
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where 

NfNT
B
Mxu 

Pmn = £   £   J VBx (x)VBx (X) <&J     y  _   ,yx <fy 
/>    q  xt 

NT
B
ENT

A
Mxu 

yi 
£ß(y) 

Qmn = 1   S   J ^ U)Vfix (X) ^ J ^—7T <*V 

Magnetic Field Matching 

x-component 

37 
£ß(y) 

m 

"A "A      bm mo _!2,      <mn <n J±,   K7   CObn    «mp «p 
£ VAx (x)U(y)- £ ^V^A, MIA(y) 

P     kuPA 

Ä   ■ = 14 
< 
£VB W/„(y)-£ ^ß    ^6)£Q   "mk        "k 

«2 

*        fc«jfcfl 

-VBr (x)IB(y) 
(2.3) 

Both sides of Equation 2.3 were multiplied by 

N™ 

Integrating over the aperture in the x and y directions and applying orthonormality of the 
y-modes yields 

KVBi=LV,z 

where 

NT
A
M NZ

E
X» 

^«=£[£ JVAX (x)VAx (x) dxj    >  _\ dy 
P        9   X[ y, 

* 
Ky     (Q£Q   e    «np «ntp 

£A(y) 

f    «np «mp        jf 
jVAx(x)VAx (x) dx] 

UPA     XI 

NT
A
M Nfxu ^ f^   f   <nq        «mp      t    ^IßWlW* 

Lmn = X [ £ J VBx (x)VAx (x) dx j      y _   ,\ dy 
p     q X[ 37 

£A(y) 

- I ^-\VBX ^
VAX W *H  "2       j     „r 

k x 

r      KUrA    x, 37 
£A(y) 

dy] 
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y-component 

1% I/A, (*WAy(y) = liPBz lhx(x)hy(y) 
m n p q (2.4) 

Both sides of Equation 2.4 were multiplied by 

TE   r * 
^4,   kr

7i   CO/In    ,rs        *    ,s * 

5 ku*A 

Integrating over the aperture in the x and y directions and applying orthonormality of the 
y-modes yields 

CVB;=DVA; 

where 

NlEr,m* NA if a>nQ y ,np      ,mp     t 

P        k»pA      xl 

NA   NB    k™   CO/In **  ,nq ,mp        *      *!    ,q >P * 

P    4       kupA     xt yi 

In addition, multiplying both sides of Equation 2.4 by 

N™ 
■Ji,      <<rs *     nS 

5 

and integrating over the aperture yields 

uz n.z 

where 

NT
A
MNT

A
Exu yu 

Mm=H K WA, 00 ^J^(y)v^(y) d* 
P     1   xt yi 

NT
A
MNT

B
Exu yu 

V^i   r-i   r '"1        "mP      *      r   '1 "P      * 
#«»= £ X )IBX(X)IBX (x) dxjVBy(y)VBy(y) dy 

P    4 *i yi 

Complex Power Conservation 

Several relations now exist between the z-mode voltages and currents at section interfaces. 
Ultimately, a single coupling expression for the voltages and a single coupling expression 
for the currents is required. To determine the means by which the previously derived 
coupling expressions can be combined, a conservation of complex power technique is used. 
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Conservation of the complex power flowing in the z-direction normal to the section 
interface is enforced regardless of the number of z-modes used. 

The total power carried by the structure is summed over all z-modes as follows 

"}*? 
PX = 11

V
A/AZ   J fä(x,y)xh?A(x,y)*.uzdydx 

m   n xtyi 

pjB pjB X y 

Pfz = ttVllPB * J jV^xh^y)* .uz dydx 
m   n xtyi 

Using the field relations in Section 2.3.2.9, the power flow through any given section is 

"?N? NTE NTM 
*      y       y      xu  «nq >mp       *      >u    «q ;P , .* T-ll^l [t i[j/7w/7w*&7V"wv;w*^ 

m   n      Z P     9     X{ 

xu    „nq ,mp        *      >> /„   (v)/     (j) 
-\VX   (x)Vx   (x) dxj   y    _ ^ dy] 

yi 

xi y\ er(y) 

iyy    k'COUr) xu ,np ,mp       * 

P     kup    xi 

N™ , m* r 

'    2^ „2 \VX   (x)Vx    (x) dx] 
P        kup       Xi 

Therefore Pz for section A and section B can be expressed in terms of the previously 
derived coupling matrices. In addition, the coupling between the modal fields in sections 
A and B is required to be such that the power coupled from z-modes in section A to z-modes 
in section B is the same as the power coupled from z-modes in section B to z-modes in 
section A. 

ntot _ 

z j 
[c1"+Mt-Kt][V; 

and 

ptot _ it 

z J 
[A+H-P] 

it 

z J 
[B+J-Q] V, 

z J 

So for conservation of complex power, it is required that 

D'+N-L^B + J-Q 
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This relation can be readily verified by inspection of the individual terms in each matrix 
listed previously. To obtain a single coupling expression for the z-mode current, and a 
single coupling expression for the z-mode voltage, write 

'
I
AJ = [CI][

I
BJ.[VBJ = [CV] VAz 

Therefore, for power conservation 

[Ci] Cf+Mf' K = [A + H-P][CV] 

To ensure complex power conservation regardless of the number of z-modes used in each 
section, the following expressions for the current and voltage coupling will be used 

[CI] = [C + M-K]"1[D + N-L] 

[CV] = [A + H-P]-1[B + J-Q] 

= [A + H-P]"1[Dt+Nt-Lt 

The corresponding derivations for TE and TM-to-x and TE and TM-to-z modes are presented 
in Appendix VII. Appendix VIII contains a summary of the coupling expressions for each of 
the three mode options. 

For sections, with uniform dielectric constants the self-coupling matrices [A + H - P] and 
[C + M - K] are diagonal. Therefore, calculating these matrices and their inverses requires 
only a small computational effort for this case. 

2.3.3.2     Section Discontinuity Scattering Matrix 

Once the z-mode voltage and current coupling matrices are determined for each 
two-dimensional section discontinuity, the scattering matrix of the discontinuities can be 
determined. The coupling expressions for the z-mode voltages and currents were used in the 
form used previously in Section 2.3.2.4 

B2J 

for "step-up" transitions (section A cross section enclosed by section B cross section), and 

L*BZ 

for "step-down" transitions (section B cross section enclosed by section A cross section). Pj, 
and Py are the current and voltage couplings, respectively. These coupling expressions are 
listed in Appendix VIII for the various choices of eigenmodes. 

As for the two-dimensional case discussed in Section 2.3.2.4, note that the currents in the 
smaller section could be expressed in terms of the currents in the larger section, but not vice 
versa. This is because there was no boundary condition for the magnetic field on the wall of 
the aperture. Similarly, the voltage in the larger region could be determined from the 
voltage in the smaller region and the boundary constraint that the component of the 
electric field tangential to the section interface must disappear on the aperture wall. 
However, as for the two-dimensional case, this boundary constraint means that a coupling 
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expression relating the voltage in the smaller region to an arbitrary voltage in the larger 
region cannot be defined, since an arbitrary electric field cannot be specified in the larger 
region. 

A scattering matrix relating the amplitudes of the incident and reflected waves on each 
side of the discontinuity is required and this can be derived from the voltage and current 
coupling relationships. This scattering matrix is written as 

■-h1"1 Sll   |   S12 

S21   I   S22 

I -1 

coupling [P     ] 

section interface 

Figure 2.11  Single input section coupled to N output sections 

Step-down transitions 

Figure 2.11 schematically shows a single input section coupled to N output sections through 
a step-down discontinuity. The voltage and current coupling between the input section and 

the nth output section are written as Py and Pj , respectively. Representing the incident 
and reflected wave amplitudes as shown in Figure 2.11, the following relations can be 
defined 

>(«) 
V c»+bü c'+b! = JiP 

n 

c»-b« = ^\c'-b>\ 
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Therefore 

fc^S^fp^^-pWfc'+tfJ+ip^tf-c7 

This leads to 

and 

N 

U+JTP^P^ 
p 

N 
u-jpifM^ 

+2 
N 

U + JP^P^ 
N 

tn),II XPW 

r// _ p(n) 

In matrix form 

u+ 
N 

U+JP^P^ 

U^-2P(
I"
) 

W 

U-JP^P^ 
p 

u+xpifM^ 
P 

p(q) f 

"b1" 

n 
CO 

= 

[Snl ', [   s12  ] c 

b0 
S21 

1 
1 S22 

n LcNJ — -hi- 

where 

Sn=- U+XP(/}P/P) 

-i 

U-XPy^P/^ 
P P               J 

S12„=2 u+fy/^ 
-1 

p(w) 

p             J 

S2lw=P5m)[U-Su] 

S22lwl=[ü5lwl-P(
/
m)Sl2II] 
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Step-up transitions 

Figure 2.12 schematically shows N input sections coupled to a single output section through 
a step-up discontinuity. The voltage and current coupling between the n"1 input section and 

the output section are written as Py and Pj  , respectively.  Representing the incident and 
reflected wave amplitudes as shown in Figure 2.12, the following relations can be defined 

cn+bn = Jt^ cl + bi 

Therefore 

C„'-»„'=PHC"-*'' 

c"=£p<,»>[-p«c»+P<"V+c'„]+ip<v"^ - b" 
n n 

This leads to 

// -2 
N 

p 

N 
1^4 

N 
>(.P)T>(P) u+XP(/)p/ 

p 

N 
t(p)v(p) 

p 

II 

coupling [p     ] 

section interface 

Figure 2.12 N input sections coupled to a single output section 
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and 

N 

q. 

In matrix form 

U^-2P7 
(«) 

N 
U + IP^P^ 

-1        ^ 
p(?) 

+p (n) u+ 
AT 

(p)pO>) u+lP^Pi 
# 

-A 

(p)n(p) .// 

where 

"•4" 
hi 

Sn 
1 
1 Sl2 CO 

I 

1 
°N 

n 
_c   _ 

[  s21 ] 
1 

1 S22 
. _bn_ 

"im 

Sl2 

S21„ 

[USmn-P^Szg 

Pim)[U-S22] 

=   2 

S22    = 

,(n) 

P 
N 

u + 2 P^PS
P)
     U - X W 

2.3.3.3     Scattering Matrix Cascade 

The modal scattering matrices for each two-dimensional section discontinuity (in the x-y 
plane) can be cascaded in the z-direction with the simple 2-port scattering matrices of 
each section to produce the overall scattering matrix for the entire waveguide element. 
The general case of two cascaded multiport scattering matrices is shown in Figure 2.13. 

The incident and reflected wave amplitudes (c^b1), (cn,bn), and (cin,bni) are related by 

[b'i 

[c"j 

[Sn]   [S{2] 
[S21]   [S22] [b"] 

and 

[b7/] 

[c/7/] 

[Sfi]   [Sg]' 
[S21]   [S22] [b7//] 
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o- 
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N 

ffl 

M 

N 
ffl 

Figure 2.13  Multiport scattering matrix cascade 

The required cascaded scattering matrix is given by 

[cff/] 
[sh] [Sh] 
[S21] [S22] [b7//] 

The parameters at the cascaded ports are eliminated by first expressing [b  ] as follows 

[b"] = [S»][c"]+[S»][b'"] 

=[s!!][[s;,][c']+K][b»]]+[s;;][b»'] 

and then by eliminating [c  ] to obtain 

[b"]=[[sl"1]+[sfaKu-[s^][si2])-
1[s1"1Isi1]][c'] 

+[sy(u-[sy[sy)"1[s[i][b-] 

and finally by writing an expression for [c   ] as 

[c///] = [S^]][c
//] + [Sf2][b

/] 

= [S^1]][[S21][c
,/] + [S22][b'/]] + [S2

/
2][b

/] 

= [S2
/

1][u + [S^2](U-[S^][S22])"1[S[,
1]][b

///][S21][c/] 

+ [S2'2] + [S'2\ ][S'22] (u - [sfjisy1^] [b"'] 
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the required parameters can be identified as 

[Sf i] = [Sii]+[sf2](u-[sfUsy) \sfUs5ii 

[Sf2] = [sf2](u-[sfi][s^])"1[sf/
2] 

[S^] = [S2
i
1] 

[Sc
22] = 

U + [S£2](U- [SfilS^])"1^] [Sii\ 

[säi+tsgis^^u-Esgis^])"1^] 

Similar expressions for the case of two-port scattering matrix cascading are presented 
in [37]. The treatment shown above is superior to that described in [37] in that multiport 
scattering matrices can be handled, and only a single inverse needs to be evaluated. 

The z-mode scattering matrices for uniform sections are diagonal, with elements 

^11   =^21   -u 

Sff = Sff = Dmn = 8mn exp(-,lf /,) 

where ls is the length of the section and 8mn is the Kronecker delta. Note that this is the 
only point where the section lengths appear, since all other quantities relating to 
propagation constants and mode coupling are related to the two-dimensional cross sections 
of the various sections in the element. This means that only the final scattering matrix 
cascade needs to be recalculated if section lengths are varied. This leads to considerable 
savings in computational effort where optimisation of a structure is required with respect 
to the lengths of individual sections. 

To perform the section cascade, the two-port scattering matrices for the uniform sections 
are first cascaded with the scattering matrix SD of the discontinuity immediately 
preceding each section. This yields a multiport scattering matrix Sn which includes the 
discontinuity and the uniform section following it which is given by 

[sfii^sß] 

[Sg] = [S?2][D] 

[S?1] = [D][S?1] 

[S&] = [D][SglD] 

As described in [37], strongly evanescent modes for which I kz /s I < 15, where Zs is the 
length of the section, are not considered in the cascade. While such modes play an 
important role in evaluating the z-mode scattering at individual discontinuities, their 
fields are extremely weak away from discontinuities. Therefore, once they have been 
accounted for in the coupling evaluation, their subsequent effect on the overall scattering 
matrix cascade is negligible. 

The section cascade begins at the specified input end of the element, with successive 
sections represented by S^ cascaded to the end of the previous section. The total cascade up 
to the section to be added is represented by S1. The general multiport cascade is thus 
applied repetitively to construct the entire element. The input and output ports for the 
element are assumed to be terminated with matched impedances. These scattering 
parameters constitute the output of the three-dimensional analysis. 
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3   RESULTS 

3.1    Two-dimensional Structures 

Various two-dimensional waveguiding structures for which theoretical or experimental data are 
known were analysed using the transverse resonance technique described in Section 2. By 
comparing the results of the analysis with existing results, both the transverse resonance theory 
and its implementation in the program TERESA (for TransversE RESonance Analysis) could be 
tested. In each structure, TE and TM-to-y eigenmodes were generally used, although TE and 
TM-to-z modes are more appropriate for structures with a uniform dielectric constant. Although 
affecting the required amount of computational effort, the particular choice of TE and 
TM-to-x, y, or z eigenmodes was found to have no effect on the results. 

3.1.1     Double Ridged Waveguide 

Montgomery [9] calculated the cutoff frequencies of TE modes in the double ridged 
waveguide shown in Figure 3.1. A comparison was made these results and results obtained 
from the transverse resonance analysis. This data is shown in Table 3.1. In the side 
regions, 9 TE and 8 TM-to-z modes were used, while 3 TE and 2 TM-to-z modes were used in 
the gap. The number of modes in the side regions was determined from relative 
convergence given the number of modes in the gap. The number of gap modes was chosen 
according to convergence of the final results. Note that one more TE-to-z mode was used 
than TM-to-z modes. This is because the lowest order TE-to-z mode is the TEM-to-u mode 
for which ky = 0. This mode has no TM-to-z counterpart, so that one extra TE-to-z mode 
must be used to attain the same ky value as the highest order TM-to-z mode. This 
situation also arises when TE and TM-to-x modes are used. If TE and TM-to-y modes are 
used, one more TM mode than the number of TE modes is used to account for the 
TEM-to-u mode. This difference arises the different definitions of the various mode types. 

2.54 <- 

> t 13.683 

r-l 
ö 

) 

t 13.683 

^  5.08 ^ ^ 5.08 ^ 

Figure 3.1    Double ridged waveguide cross section [9] (dimensions in mm) 

The transverse wavenumbers kr for various modes are shown in Table 3.1. The modes 
labelled as "trough" modes are so named because the fields in the gap are only weakly 
coupled to the fields in the side regions. The agreement in Table 3.1 is generally better 
than 0.2 %. The simplicity of the ridged waveguide cross section belies its importance in 
many applications including broadband transitions and filters. 
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Table 3.1     Comparison of ridged waveguide TE mode cutoff frequencies 

Mode £9] (GHz) iTc 
R (GHz) 

TEio 6.857 6.871 

TEio (trough) 15.104 15.104 

TE20 24.858 24.890 

TE2o (trough) 29.536 29.541 

TE30 32.024 32.026 

TE11 (trough) 33.271 33.271 

3.1.2     Unilateral Finline 
Finlines are an important structure extensively used in broadband millimetre-wave 
applications due to their compactness and the ease of mounting active devices. The 
theoretical results of Vahldieck [21] for the unilateral finline shown in Figure 3.2 were 
used to verify the transverse resonance results for this guide. This structure was more 
complex than the ridged waveguide in that it contained both "step-up" and "step-down" 
discontinuities on either side of the slot region, as well as a dielectric. Symmetry about 
the axis shown in Figure 3.2 was invoked to reduce the computational effort required. For 
convergence, 2 TE and 3 TM-to-y modes were used in the slot region, with 13 TE and 
14 TM-to-y modes in the dielectric region and 8 TE and 9 TM-to-y modes in the side regions. 

A 

, 0.7675 . 
<———>■ 

^0.7675   ^ 

1 
CO 

o" 

\ 
^     1 

°a   Hi \r= 3.75 
Fin thickness 5 urn 

0.11 

Figure 3.2    Unilateral finline cross section [21] (all dimensions in mm) 

A comparison of the normalised wavenumbers kz/ko is shown in Figure 3.3. Note that the 
agreement is generally better than 3 %. The discrepancies between the two sets of results, 
particularly for higher order z-modes, may be due to numerical inaccuracy or convergence 
difficulties in Vahldieck's method as discussed by Mansour and MacPhie [27]. Graph 
reading errors in obtaining Vahldieck's results could also contribute to the observed 
discrepancy. 
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Figure 3.3    Comparison of r~ versus frequency results for unilateral finline 

3.1.3      Suspended stripline 

The suspended stripline from [27] and [51] shown in Figure 3.4 was analysed using the 
transverse resonance technique. Symmetry about the axis shown was used to reduce the 
required computational effort. For convergence, 3 TE and 4 TM-to-y modes were used in the 
narrow region under the strip, with 4 TE and 5 TM-to-y modes in the other regions. 

Figure 3.4    Suspended stripline cross section [27] 
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The results were compared with theoretical results published by Mansour and MacPhie 
[27], and Bornemann [51] as shown in Figure 3.5. The agreement with [27] is excellent, 
whereas some discrepancies are again noticed with Bornemann's results, particularly for 
the higher-order modes. As with the unilateral finline, numerical inaccuracy and 
convergence difficulties inherent in Bornemann's method are the most probable causes of 
error. 

3.1.4     Coplanar Waveguide 

The coplanar waveguide is another structure commonly used for millimetre-wave 
applications. The coplanar waveguide shown in Figure 3.6 was analysed and the results 
compared with those of Mansour and MacPhie [27], and Bornemann and Arndt [13]. The 
calculation of the dominant and first-order odd mode normalised propagation constants 
kz/ko was performed with the depth, d, of the groove set to 0 and 0.5 mm. Symmetry was 
used to reduce the size of the calculation, with an electric wall inserted on the axis shown 
to generate the desired odd symmetry. For convergence, 2 TE and 3 TM-to-y modes were 
used in the slots, with 8 TE and 9 TM-to-y modes in the side regions. For d = 0, 8 TE and 
9 TM-to-y modes were used in the dielectric regions, and 13 TE and 14 TM-to-y modes for 
the d = 0.5 case, as required by the relative convergence criterion. 

3.0 

25 
frequency (GHz) 

Figure 3.5    Comparison of r^ versus frequency results for suspended stripline 

For both groove depths, the agreement with [27] and [13] is close, as shown in Figure 3.7, 
although the agreement is closer for the d = 0 case. Note that increasing the groove depth 
decreased the first-order odd mode cutoff frequency, reducing the single-mode bandwidth 
of the guide [27]. 

3.1.5     Groove Nonradiative Dielectric Guide 

Nonradiative dielectric waveguide is attractive for millimetre-wave applications 
because of its simplicity, ease of fabrication, and low loss. Tong and Blundell [52] included 
grooves in the upper and lower plates to fix the dielectric slab in place, as shown in 
Figure 3.8. The inclusion of a groove, however, renders simple single-mode transverse 
resonance modelling inaccurate because of mode scattering at the groove discontinuities, so 
that a generalised, multimode treatment is required. 
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Figure 3.6    Coplanar waveguide cross-section (all dimensions in mm) 
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Figure 3.7    Comparison of r^ versus frequency results for coplanar waveguide 

Figure 3.8    Groove nonradiative dielectric (GNRD) waveguide cross section 
(all dimensions in mm) 
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Transverse resonance analysis of the groove nonradiative dielectric (GNRD) guide shown 
in Figure 3.8 yielded values for the normalised wavenumber kz/ko of the LSMn mode 
which could be compared with experimental data published by Tong and Blundell. GNRD 
guides with relative dielectric constants, er, of 2.56 and 4.0 were analysed. TE and TM-to-x 
modes were used in the calculation, with 5 TE and 4 TM modes used in each region to ensure 
convergence. The agreement with the experimental data shown in Figure 3.11 is generally 
better than 5 %. This disagreement is also evident in Tong and Blundell's calculations, and 
so probably originates from experimental errors. 

9 10 
frequency (GHz) 

11 

Figure 3.9    Comparison of r^ versus frequency results for GNRD waveguide 

3.1.6     Shielded Dielectric Image Guide 

A comparison was made between the theoretical results presented by Strube and Arndt [40] 
and the results from the transverse resonance analysis for the shielded dielectric image 
guide shown in Figure 3.10. This guide differs from those discussed previously in that it 
possesses a non-uniform region. For this reason, TE and TM-to-y modes must be used. For 
convergence, 5 TE and 6 TM-modes were required. 

i_ 

7.01 

le =61 r 

15.798 

3.25 

Figure 3.10   Shielded dielectric image guide cross section 
(all dimensions in mm) 
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Unlike the structures previously examined, this guide was found to support a complex mode 
between 13.8 and 16.3 GHz, as can be seen from Figure 3.11. Complex modes occur as a result 
of coupling between degenerate z-modes. Although only one mode is shown in Figure 3.11, 
they must exist in degenerate pairs with propagation constants of opposite sign 
(± k2 = ± ß ± j a). While a real power flow exists, the total power transmitted through 
the cross-section is zero, since equal amounts of power are transmitted in the forward and 
backward directions. Hence, complex modes do not correspond to power dissipation, and 
are supported in the lossless waveguide model. The agreement between the two sets of 
results shown in Figure 3.11 is excellent. 

real 

imag. 

-2 

theory [40] 

TERESA 

12 14 16 
frequency (GHz) 

18 

Figure 3.11  Comparison of r^ versus frequency for shielded dielectric image guide 
*0 

3.2    Three-dimensional Structures 

The calculation of the propagation constants, k2, and the modal fields for the z-modes in 
two-dimensional sections allowed the scattering parameters for three-dimensional waveguide 
elements to be calculated. As for Section 3.1, structures for which independent theoretical or 
experimental results could be found were analysed. 

3.2.1     Rectangular Waveguide Transformer 

The simplest type of element to analyse comprises cascaded rectangular waveguide 
elements. A typical example of such a structure is the Ku to X-band transformer shown in 
Figure 3.12, with dimensions as shown. This structure was analysed by Arndt et al. [39]. 
For analysis by the TERESA program, 6 TE and 5 TM-to-z y-modes with 60 z-modes were 
used in each section. A comparison of the reflection coefficient I Sn I given in [39] and by 
the TERESA program is shown in Figure 3.13. The small error between the two sets of 
results can be attributed to reading error in obtaining the results from [39] graphically. 
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Figure 3.12  Four-section Ku to X-band waveguide transformer   (all dimensions in mm) 
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Figure 3.13  Comparison of input reflection coefficient for Ku to X-band transformer 

3.2.2     Rectangular Waveguide E-Plane Stubs 

A comparison of the magnitudes of Sn and S12 and the phase of Sn with known results 
was made for the rectangular waveguide with E-plane steps shown in Figure 3.14. This 
structure was independently analysed by Rozzi and Mongiardo [53]. The results from [53] 
are compared with the TERESA output in Figure 3.15. The two sets of results agree closely, 
except at 14.75 GHz where TERESA appears to predict a resonance. Note however that 
the Rozzi and Mongiardo technique also shows some anomalous behaviour near this 
frequency. For the TERESA analysis, 4 TE and 3 TM-to-z modes and 35 z-modes were used 
in the smaller sections, with 6 TE and 5 TM-to-z modes and 55 z-modes used in the larger 
sections. Symmetry was used to reduce the size of the calculation. 
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3.2.3     E-Plane Insert Filter 

The E-plane metal insert filter shown in Figure 3.16 was analysed, and the results 
compared to calculations by Vahldieck et al. [44], and measurements by Tajima and 
Sawayama [54]. This comparison is shown in Figure 3.17. The results from the TERESA 
analysis agree well with those from [44]. A small discrepancy is apparent with the 
measured results of [54] which can be attributed to graph reading error. For the TERESA 
analysis, 6 TE and 5 TM-to-z modes and 55 z-modes were used in each section. Symmetry 
about the y-z plane was invoked to reduce computational effort. 
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Figure 3.14 WR 75 waveguide with E-plane stubs   (all dimensions in mm) 
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Figure 3.15  Scattering parameter plots for E-plane stubs in rectangular waveguide 
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Figure 3.16  Rectangular waveguide E-plane metal insert filter (all dimensions in mm) 
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Figure 3.17  Transmission coefficient for E-plane metal insert filter 

3.2.4     Square Waveguide Iris Polariser 

The square waveguide iris polariser shown in Figure 3.18 was analysed and a comparison 
made with independent calculated results from [55]. These components are used to excite 
circularly polarised waves in square aperture antennas by producing a 90 degree 
differential phase shift between the orthogonal TEIQ and TEQI modes. 

Figure 3.18  Square waveguide iris polariser 
(all dimensions in mm) 

For the TERESA analysis, 20 TE and 21 TM-to-y modes and 60 z-modes were used in each 
section. Horizontal and vertical symmetry were used to reduce the size of the calculation. 
For the TEIQ mode, a horizontal magnetic wall and a vertical electric wall were used, and 
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a horizontal electric wall and a vertical magnetic wall for the TEoi mode.   Figure 3.19 
shows the good agreement between the TERESA results and the analysis presented in [55]. 
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Figure 3.19  VSWR and differential phase shift for square waveguide iris polariser 
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3.2.5     Ridge Waveguide Notch 

The notched ridge waveguide shown in Figure 3.20 was analysed with the results 
compared to experimental data obtained by the present authors. A resonance was observed 
at 6.55 GHz. The close agreement between theory and experiment is shown in Figure 3.21. 
For the TERESA analysis, 60 z-modes were used in each section to ensure convergence. 

20.19 

Figure 3.20  Notch in ridge waveguide (all dimensions in mm) 
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Figure 3.21  Transmission coefficient for notched ridge waveguide 
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3.2.6     Cross-Iris Filter 

The transmission coefficient IS211 was calculated the cross-iris filter shown in Figure 3.22 
using the TERESA analysis. In the rectangular section, 8 TE and 9 TM-to-y modes with 
60 z-modes were used. For the irises, 3 TE and 4 TM-to-y modes were used in the smaller 
side regions, and 5 TE and 6 TM-to-y modes in the larger centre region, with a total of 
30 z-modes required for convergence. Symmetry about the vertical and horizontal planes 
was used to reduce the size of the calculation. The results obtained compared well with 
the calculated and measured results determined by Ihmels and Arndt [50], as shown in 
Figure 3.23. 

12.155 

Iris thickness 0.21 mm 

Figure 3.22  Cross iris resonator filter (all dimensions in mm) 

4   CONCLUSIONS 

A three-dimensional mode matching analysis which uses the generalised transverse resonance 
technique to analyse the constituent two-dimensional cross-sections in passive waveguide structures 
has been developed and successfully tested. Comparison with a broad range of waveguide components 
for which independent experimental or theoretical data could be found revealed close agreement in all 
cases. 

This method potentially offers advantages in speed and efficiency over more generally applicable, but 
computationally intensive, methods such as the finite element or finite difference methods. It 
promises to be especially useful for the analysis and optimisation of broadband waveguide components. 

Further work will concentrate on the analysis of more complex three-dimensional waveguide 
components for the design of filters and broadband transitions. 
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Figure 3.23 Transmission coefficient for cross iris resonator filter 
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APPENDIX I   MODE FUNCTION GENERATOR 

The field in each subregion of a given two-dimensional section within the element to be analysed is 
represented by an expansion in terms of y-modes which are TE and TM to the x, y, or z reference 
directions. The choice of which direction was most appropriate for a particular type of structure is 
discussed in Section 2.3.2. The general technique used to generate the fields corresponding to these 
mode functions follows Felsen and Marcuvitz [10], and is derived in this appendix from Maxwell's 
equations. These equations are 

VxH = jcoeE (1.1) 

VxE = -jcouH (1.2) 

V»eE = 0 (1.3) 

V«uH = 0 (1.4) 

From Equation 1.1 

VxVxH   =    Vx (jcoeE) 

(V x V x H) x uz   =    [V x (jcoeE)] x uz 

Using the identity 

V(A«B)    =    (A»V) B + (B»V) A + A x (VxB) + Bx (VxA) 

then (with A = E and B = uz) 

[V x (jcoeE)] x uz   =    jcoe [E x (V x uz) + (E-V) uz + (uz«V) E - V(E»uz)] 

3Ef   dE7 =    jcoe[0 + 0 + ^+-^-VtEz-VzE2] 

=    jcoe[^-VtEz] (1.5) 

where Vt is the transverse gradient operator, and Et is the field in the plane transverse to the reference 
direction to which the modes are to be TE or TM. Note that since the modes are to be recalculated for 
each subregion layer of differing dielectric constant, e is regarded as uniform. From Equations 1.1 and 
1.2 

VxVxH   =    k2H (1.6) 

where k2= co2ue 

From Equations 1.5 and 1.6 

Now from Equation 1.1 

Thus 

^ = —k2Htxuz+VtEz (1.7) 
az JQ)£ 

Vtx Ht = jcoeEz 

Vf x Ht • uz = Vt • Ht x u2       =   jcoeE2 

VtVt • Ht x uz = jcoeVtE2 (1.8) 
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From Equations 1.3 and 1.4 

f   =    -^HtXu^V^.HtXu,] 

= -j<oji it + 
vtvt" 

k2 J • Htx 

where It is the transverse unit dyadic u^u* + UyUy. 

Similarly, 

9Hf 

dz 
=   - -jcoe 1» + k2  J 

(1.9) 

• uzxE, (1.10) 

Let 

Et(*,y,z)   =   ^Vi(z)ei(x,y) 
i 

Ht(x,y,z)    =    2//(z)Ä,-U,y) 

Substituting in Equations 1.9 and 1.10 

i    dz 

Y^-hi(x,y)   =   -jcoe 
:      OZ 

These equations will be satisfied if 

1    dV, 

hti) dz 
Let(x,y)   =   -jafi 

1 +^ 
_ '     k2 

1  + ^ 

-■     i 

1       37; 
hi(x,y)   =   -jcoe lf + 

V/Vr 

Vi(z) dz 

Now RHS is independent of z coordinate in both cases and thus we can write 

1    dVt 

y£li(z)hi(x,y)xuz 

i 

,uzx2^/(z)eJ-(x,y) 

»h,(x,y)xuz 

'uzxe,(x,y) 

Ii(z) dz 

1    9/f 
V;(z) 3z 

le. 

■e^y)   =   -jKiZiC^y) 

hi(x,y)   =   -jKiYihffay) 

dZ 

dz 
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APPENDIX II MODE FUNCTION DERIVATIONS 

Using the mode function generator taken from Felsen and Marcuvitz [10] and derived in Appendix I, the 
actual y-mode fields can be calculated. These modes are defined as TE or TM to a reference direction x, 
y, or z, depending on the nature of the section being analysed. TE and TM-to-y mode fields are derived 
in Section 2.3.2.1, and this appendix contains exactly the same derivation for TE and TM-to-x and TE 
and TM-to-z modes. For x and z reference directions, note that the single prime denotes TM modes, and 
the double prime denoted TE modes. This is opposite to the convention adopted for the y reference 
direction in Section 2.3.2.1. The reason for this was to maintain as many similarities as possible 
between the derivations in this appendix and the derivation in Section 2.3.2.1. The different 
convention is also convenient in that it reflects the manner in which the TERESA source code was 
written to implement the layer mode function calculation for each subregion in a given two-dimensional 
section. Note that the y-mode normalisations given in Section 2.3.1 are assumed. 

TE-to-x (e*=0) 

eT(y,z) = e"y(y)e jkzzuy + e"z(y)e jkzzuz 

-jk.z Jk^ hj(y,z) = hy(y)e JKz\ + hz(y)e JKzzuz 

kxYxhT(y,z) = co£ 

Thus (after cancelling ei^z2 factor) 

1 

VrVr 

kXYX(hyUy+hZUZ)    = o        ,2 

0)ß0 

\ 

W By 
2+k0er 

i,+n? 

de. 

• uxxeT(y,z) 

de "     "\ 
ezuy + Jkz ~^uy ~ (*0er ~ K )«y»z " fiz -=^-U2 ay dy 

So 

K-x* x"y 
oßo 

(2 2\ " ko£r-ky)ez+jk. 
dey 

~dy~ 

Now, since V.e" = 0, and e^. = 0 

de 

% 
- = ;V: ■vz 

Therefore 

If Y^ is chosen to be 

kxYxhy = - 
O)ß0 

k V   -     x 
*   Y 

COflQ 

then 

hy   = 

71 



DSTO-RR-0027 

Similarly 

^■x^x'h  ~ Q)ßQ{ 
(k$er-k*)ey+jk. 

From V.e »= 0 

_k2"    _    jk  9f2. 
v-yc-y 

So 

Hence 

As for TM-to-y modes, set 

Using 

leads to 

«tvl   y fby       ~ ^ V Z (OflQ   y 

hz     =   ey 

" " " —  ifr      7 
h7     =  ey     =   I (y)e Jlczz 

~  =   -jkyYV"(y) =   -j(oeQv\y) 
ay J 

it ti 

ez=-hy = - 
jjky_ 

= _^V\y)e-J'czz 

TM-to-x (h^=0) 

eT(y,z) = e'y(y)e jkzzuy + e'z(y)e jkzzuz 

hT(y,z) = hy(y)e~jkzzuy + hz{y)e~jkzzviz 

kxZxeT(y,z) = a> 

Thus,(after cancelling e1kzz factor) 

a     £(y) 
>hr(;y,z)XUx 

'cx^'xey 
(OEQEJ. 

(ko£o-k^)hz+jkz^- 

Now, sinceV.h> = 0 and hx = 0 

So 

fr " ^ 
y Ct)£0£r 
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If Zx is chosen to be 

then 

Similarly 

From V.h' = 0 

So 

Hence 

As for TE-to-y modes, set 

Using 

leads to 

(0£Q£r 

ey     =   hz 

'cx^xez  ~ 
(0£Q£T 

a,: 

(kQ£o-k%)hy+jk. 
dhz 

*-xZxez 

~Ky fly — JKg 

hy 

dy 

(oeoer 

I f 

e, =   -h z -     "y 

ez =   -hy    =   V'(y) el^ 

av 
-jkyYI(y)   =  -jmnol(y) 

3h„ 
h,      =   e„      =  -rL^e-)k; kz 3y 

k   l'(y)e-Jkz^ 
CDUO 

TE-to-z (e2=0) 
eT(y,z)  =   ey(y) e"Jkzz uz 

hT(y,z) =   hy(y) eikzz uy + hjy) eikzz uz 

kxYxhT(y,z)   =  ©e 

Thus (after cancelling e~Jkzz factor) 

lt + 
VJVJ_ 

k2      J 

^(Äylly+ÄjUj) 
1 

Ö)//0 

• uxx e T(y, z) 

de. (1 1\     " OC-y 
*oer-*z]e,,uz-./fcz-^u 

3y 

If Yx is chosen to be 

where 

then 

kj 
kx(ü\io 

,2 ,2,2 ,2        ,2 
kT      =   k^ + ky    =   kQEr-kj 

h2      =   ey 

' k2
T * 
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Let 

then 

because 

TM-to-z (hz=0) 

hz     = ey l"(y)e'ik22 

k' d l"(y)e-Jkz 2 kldv 

ej 

^V"(y)e-J^ 

^l"(y) = -jcoe0v"(y)- 

hT(y, z) =  hy(y) e1kzz uz 

(y^) =   ey(y) eikzz uy + e'z(y) e1kz2 uz 

kxZxej(y,z)    =  co 

Thus (after cancelling e1kz2 factor) 

kxYx(eyuy+ezuz) =   - 

1 1 
Lilt + —T Vj -7-7 Vj ^ r   (oz    x e(y) 

fl)//0 

hT(y, z)x ux 

dk. 
(*?£,.-*z

2)tyiz-./*z-^-u 

If Zx is chosen to be 

then 

If 

then 

t 
kx(oeoer 

ez     =    -hy 

jk^ahy 
= k2

T ay 

=    -hy      =  v'(y)e-Jkzz 

=    -^l'(y)e-Jkzz 

kT 
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APPENDIX III      REGION EIGENMODE COUPLING 

In this appendix, the coupling between x-modes in adjacent subregions is calculated for TE and TM-to-x 
and z modes. The derivation is essentially similar to the TE and TM-to-y mode coupling derivation in 
Section 2.3.2.2, and proceeds using the same approach. The x-mode coupling is evaluated by considering 
the continuity of their constituent y-mode fields which were derived in Appendix II for TE and TM-to-x 
and TE and TM-to-z modes and Section 2.3.2.1 for TE and TM-to-y modes. Note that complete listings of 
each of the coupling matrices is omitted. Appendix IV contains these expressions for the general cases 
of section subregion coupling between all possible combinations of TE and TM-to-x, y, or z x-modes. 

IH.l   TE, TM-TO-X COUPLING 

III.1.1   Electric Field Matching 

To evaluate the x-mode coupling at subregion interfaces, the components of the x-modes' 
constituent y-mode electric fields tangential to the interface are matched across the interface. 

y-component 

Matching the y-component of the electric field at the interface between subregions A and B 
yields the expression 

Nf NlM NT
A
E       .    . NT

A
M       .    . 

lVBx V?) + * I VBx IBy(y)= ^VAx IAy(y) + ^ I VAxIAy(y) 
n *      P i z       j 

Using the orthogonality condition for TE-to-x y-modes in subregion B 

\QiBy{y)iByiyfdy = dij 

and integrating over the subregion interface yields the coupling equation 

N
T

B
M
      yu NI

E
     .yu 

VBX  +^L2vBx jlBy(y) IBy(y)dy= £vAx \ IBy{y) IAy(y)dy 
z      p y[ i yi 

NT
A
M     .y„ 

+-r^lvBxihy(y)iAy(y)dy 
Kz     J        yi 

This equation can be expressed in terms of coupling matrices A, B, and G as 

N™ NT
A
M .     NT

A
M 

<<mn        ^2, imp        JÜ, «mi        ^L «mj 

vBx + £ GnpvBx = I KiVAx + £ KjVAx 
p « ;' 

Note that A, B, and G developed for TE and TM-to-x modes are equivalent to matrices derived 
for TE and TM-to-y mode coupling at subregion interfaces. 
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z-component 

The z-component of the electric field is matched across the interface between subregions A and B 
in the same fashion as the y-component to yield additional coupling relations. This field 
matching is expressed as 

N™ NTE N™ N¥ 

I VBx VB -^ 1^ VBy(y)= X VAxVAy(y)--£ZvAx VAy(y) 
n Kz      p i Kz      j 

Using the orthogonality relationship for TM-to-x y-modes in subregion B 

\h
0VBy(yWBy(y)dy = öij 

and integrating over the subregion interface yields the coupling equation 

N
TE

      y N™     yu 
VBX -fJM^  \VBy(y) yBy(y)dy= lVAJvBy(y) VAy(y)dy 

z    P        yi '        yi 

z     J        yi 

where exactly the same approach is used as for Section 2.3.2.2. This equation can be written in 
terms of coupling matrices F, C, and D as 

NW N
T

A
M .     NT

A
E 

,mn # «mp * .mi _£, «mj VBX   ~ l*npVBx   =  2CniVAx ~ 2»njVAx 
P l J 

III.1.2   Magnetic Field Matching 

To obtain the remainder of the coupling expressions needed to evaluate x-mode coupling at 
subregion interfaces, the jc-modes' constituent y-mode magnetic field components which are 
tangential to the interface are matched across the interface. 

y-component 

Matching the y-component of the magnetic field at the interface between subregions A and B 
yields the expression 

NlM N
TE NlM   _    .. _   Nf 

SI . »rtrt        . n //")*"* - tttftn        it n -i±. 

k 

JL    <mn    <n rOEn   -r^    "mP    "P S    ,mi    " CO£(\   ^i    "mJ    "•/  ,   . 

Z       p I z       J 

Using TM-to-x y-mode orthogonality in region A 
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and integrating over the subregion interface yields the coupling equation 

NT
A
E      yu NT

B
M    .y„ 

<mn       fttPn   -A    «mp   r     <n *     "P -A    <mi   f     <n A    <■ lAx -^1*AX  \
VAy(y) VAy(y)dy= J,IBxjVAy(y)*VUy)dy 

z    P       yi '        yi 

mn 
NB „mjyu ,„ • 

-J-lhJv^V^dy 
Kz      J        y, 

This equation can be expressed in terms of coupling matrices <&, C, and A as 

< N™ ■    "I* i mn       -^i, „mp        ^L,      ^    t mi       -2, »mj imn       w^, „nip        ^-,      j,    *mi       *±£. n 

^ -1 <WA, = XC*A, - S <v*.. 

z-component 

Matching the z-component of the magnetic field at the interface between subregions A and B 
yields the expression 

NT/ NT
A
M NT

B
E      . 

_£,    «mn «n COUa   •£->    'mP <P x^    "ml "l 

2iAx (y)iAy(y)+^- 2iAx (y)\(y)= 2hx (y)iBy(y) 
n z       P i        ■ 

NT
B
M     . 

*z      j 

Using the TE-to-x y-mode orthogonality in subregion A 

rh "i "i 

!oWy)Wy)*dy=^ 
and integrating over the subregion interface yields the coupling equation 

NT
A
M     yu NF    .yu 

^/^X 1AX J Vyj Ily(y>dy= X'Bl J Vy) Wy)dy 
z
     V        yi l        yi 

N™      y 

z    /      yi 

This equation can be expressed in terms of the coupling matrices T, A, and ß as 

N™ NT
B
E .    N™ 

«mn       Ji, <mp       -2,     ±   «mi        Ji. >n 
JAr   +lVAr  =lAjBr 

+ lßnj*B ix J—l f   r\x Jm^      ifi   ux 

p » ;' 
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III.1.3   Complex Power Conservation 
As for the TE and TM-to-y mode derivation in Section 2.3.2.3, the coupling expressions from the 
field matching for the TE and TM-to-x modes are written in matrix form as 

I -F VB, 
C -D 

,m 
VA, 

G I 
„m 

VR L   Bx- 
B A LVAJ 

I -<& "  C+ -A 
~ ,m~ 

r I 
„m 

L'AJ _   ß A+ _ 
„m 

The power flow through the discontinuity for the mth z-mode is determined from the fields in 
both region A and region B 

yu 
<< Ju 

Pi = \El xHl dy=ZZvZ»I% jel xhf^ dy 
yi n   P yi 

yu 

f 
yi 

n    p 

Pl=)^B xH?B*dy=± iv$»lf]en
TB xhPjdy 

n    p yi 

For any given region, ef-   and h j     may be split into TE and TM components and the power 

integral evaluated as follows 

y« * yu 
r   '"        ' P r 
I eT x hT   • uxdy = I 

yu 

I 
yi yi 

yu 

(eyuy+ezuz)x(hy   uy+hz   uz) • uxdy 

= j ey (y)hz (yf -ez (y)hy (yfdy 
yi 

.2..2 yu yu 

^A, f Iy (y)Iy (yfdy + j V* (y)Vy
P (yfdy 

h Kz    yt yi 

kmkm   J   J 
^z nz    yi 
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y"       n r,* ll/l It/? 
y« C     «n up r 

J er xhr   «uxrfy= J 

yi yi 

yu 

ii« tin 
* * 

P "P 
(eyuy+ezuz)x(hy   uy + hz   uz) MJ 

y« f    tin tt/;       * f    tin up       * 
J «y (y)hz (y) dy- \ez (y)hy (y) dy 

>•/ yi 

jiy (y)iy (y) dy+T^)yy (y)Vy iy) dy 

yi 
Kz Kz    yi 

= Snp + -^\v;n(y)Vy
P(y)*dy 

y« * yu 
(•■in        <p* I- 

\ eT xhT   »ux dy= I 

y« 

■J 
y/ 

vz "*    yi 

tin tin tp* tp* 
(eyuy + ezux)x(hy   uy+hz   uz) <uxd;y 

■in ip       *        itn ip       * 

ey Whz (:y)   _ez ^Ay (y) dy 

^   y/ z  yi 

r' - &\      in region A and G' -F       in region B 
ipn L ipn 

y«        „* in tip y« /.     m up /• 
J er x hr   • ux dy = j 

y/ y/ 

y« 

= 1 
yi 

,n <n 
(eyuy + ezuz)x(hy   uy + hz   uz) 

dy 

>uxdy 

r /I tt/7 3|e i n up ^ 

«y (y)Äz (>0 -ßz (y)Äy (y) 

= ^>>'>)>-^)v;W<W> 
y/ **   y/ 

= r - O in region A and    G — F M      in region B 
ipn L ipn 

Note that+ denotes the conjugate transpose of the superscripted matrices. From the completeness 
relationships shown below, the power crossing the discontinuity can be calculated for the modes 
in both region A and region B. 
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GTG 

NT
B
E „2 „2 y¥ 

np 
i Kz Kz   yi yi 

i„i yu 

%\iB(y) iB{y)dy 
r,m,m   •>     y 
Kz Kz    yi 

TE 

rr 
,2„2 yu 

np 

ws,    00   Un     f    «q <n        * r   <p «q * 

^ i,m.m   J   Ay      Ay J   Ay       Ay 
<?   Kz Kz    yi yi 

t%jiA(yfiA(y)dy 
um,m 
Kz Kz   yi 

© e, 0 FfF      = £ * 
*np      ~  fctn^m 

y y 

JVy)Wy)*Jvy)Wy) dy 
i  "-z *z   yi 

.2 yu n   f   ""    * «p 
M VB(y) VB(y)dy 

y\ 

oo2e% yr _ «n      *   «P 

Kz Kz   yi 

jsjTE       9   9V 
+     1 \A     CO   eX   7    ,q «n        *      -f    «p <q *  ,, 

0^0     = £ Qy    VA (y)VA (y) dy\ VA (y')VA (y) # 
yu 

2J2 yu co e, 0 
um,m 
Kz Kz   yi 

So, for region A 

"5, - 
I* 

„m 

,m 

„m 

i+r+r , r+-<D 

r-<&+ ! I+<D+<D 

-A+ 

.m 

„m 
JLVAXJ 

r+ 

.<»+ 

i+r+r | r+-o ,m 

„m 
'A,J 

80 



DSTO-RR-0027 

From the relationship 

-,-1 
I     ,    -0> [I+&TY1  | [i+c&r]-1«) 

-[i+r^i^r - [I+PD]-
1 

i       r+ 
-,-nt 

-a,t 

[i+or]-1  | «Dfi+P&r1 

-rii+^r]-1 , [i+r*]-1 

it follows that [I+fOJ^r = ni+^r]"1 and [I+Or]4* = «Sfl+rO]"1. Using these new relations 

i+r+r , r+-a> 

r-o+ | i+4>+o> 

-,-1 
-* 

i 

rt 

-o+ 

-1 

Hence the power in subregion A is given by 

P?   = 
L^J  L -A1 

I 

I     ,    -O 
,m 

»m 
JLVA*J 

hx 

iiTTl 

I 
C + B+G |  ß+-C* 

Ar-A+   , A+A+O 

,m 
VA, 

.tin 

JLVA,J 

Similarly, for region B 

^ 

-D 
,m 

V 
„m 
ArJ 
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Using the relationship 

-,-1 
[I+FG]"1    , [I+FGl^F 

-[I+GF^G |   [I+GF]"1 _ 

I .-lit 
I     !    Gt 

[I+FG]"1    | FlI+GF]"1 

-GII+FG]"1 |   [I+GF]"1 _ 

it follows that [I+GF^G = Gtl+FG]'1 and [I+FG]_1F = Ffl+GF]'1. Using these new relations 

I+G+G ,  G+-F 

G-F+   , I+F+F 

-,-1 
I     ,    -F G+ 

-,-1 

Therefore, the power in subregion B is given by 

,m 

„m 

_t 

LXBXJ  L 

^ ,111 ^ 

I G* 

-F. ; i 

-D 
.m 

„m 
'AJ 

'B, 

„m 

C + G+B ! G+A-D 

B-F+C    , A+F+D I 

.m 
V, 

„m 
LVA,J 

The following substitutions will ensure that P™  = PB  for any number of x-modes in subregions 

AandB 

D->C<I> 

B->Ar 

A->C+F 

ß->A+G 
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As in Section 2.3.2.3, these relationships must be satisfied automatically for an infinite number 
of modes in subregions A and B, since both the field matching and power conservation will in 
principle be perfect. This can be proven by using completeness relations for the y-mode fields as 
follows 

Similarly 

g ana power con 
i relations for the 

yi 

VuVu 

lA (y)dy 
ny 

TF 

<DUnJr!r -»      • V -A   -1      * -f 

yivi 

-^\WW» 
= B, 

z yi 
\n„ as required. 

i  yi z  yi        ■ 

yuyu M™ 

= fr J !Wy) VAy(yl S V^(y,) VAy{y)AyAy' 
z   ViVi 1 

N™yu 

_ CO£o   <"      '" »K>v;w.y 
V 

z yi 
= DM„ as required. 

A'G 
NlEyu yu 

= I K>'Vy'j dy'-^\Wy) Wy)dy 
i yi z  yi 

2  yiyi i 

y z  yi "  at 
= ßm? as required. 
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CfF 
N™yu Vu 

= iK<*W/y%T^V^>w 
VuVu 

k,U      , -y 
z  y/ 

N TM 

(DEg 

km 
z yiyi 

Vu 

\ IWy^By^1 I VBy(V)%y(y)dydy' 

km 
z
  yi 

\VAy^Wy)dy 

- An„   as required. 

The final form for the coupling between TE and TM-to-x modes in adjacent subregions A and B 
which ensures conservation of complex power is therefore 

I -F 

G I 

I -O 

r I 

pi 
VR 

„m 
L   BXJ 

JL'iuJ 

c -C4> 

Ar A 

c+ -C+F 

A+G A+ 

VAX 

LVA,J 

„m 
L'B.J 

III.2   TE,TM-TO-Z COUPLING 

III.2.1   Electric Field Matching 

To evaluate the x-mode coupling at subregion interfaces, the components of the x-modes' 
constituent y-mode electric fields tangential to the interface are matched across the interface. 

y-component 

Matching the y-component of the electric field at the interface between subregions A and B 
yields the expression 

< NlE N™ 
lvBx IBy{y)-^pt £ VBX lBy{y)= ^vAx lAy{y) 

Tm P 

k™(OßQ 
N TM 

AT^I^X« x   '-y 

Using the orthogonality of TE-to-z y-modes in region B 

jh/B
i
y(y)iBy(yfdy = dij 
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and integrating over the subregion interface yields the coupling equation 

,m       NZ
M
      yu NI

E
     .yu 

VBx -^T^lVBx \lB(y) IB(y)dy = ^Ax \ hy(y) IAy(y)dy 
lm       P yi i yi 

,TM ,m N'/'      .yu 

—^72    L VAX J hy(y) iAy(y)dy 
kT lm J yt 

This equation can be expressed in terms of the coupling matrices G, A, and B as 

N™ NT
A
E .     N™ 

«mn        JL, imp        _£L «mi        Ji, >mj 
V

BX - IG«A = lAmVAx - 2KjVAx 
P i J 

In anticipation of the further derivation to ensure power conservation, also define 

<m„.. yu 

z-component 

Matching the z-component of the electric field at the interface between subregions A and B 
yields the expression 

N™ N™ 
-B-      ,mn    in ^L      >mi    a ^L-      i mn    t n ^-      t mi    1i 

2vBxVBy(y)= 2VAxVAy(y) 
n i 

Using orthogonality between TM-to-z y-modes in subregion B 

JoVy)vi(y)** = *&" 
and integrating over the subregion interface yields the coupling equation 

N™     .yu <mn ^L      <mi   t     <n *    ii 
V

BX = 2vAxj
vBy(y) VAy(y)dy 

'       yi 

This equation can be expressed in terms of the coupling matrix C as 

N™ 
i mn ^1- i mi 

vBx = £ cnivAx -'x 

i 

III.2.2   Magnetic Field Matching 
To obtain the remainder of the coupling expressions needed to evaluate x-mode coupling at 
subregion interfaces, the x-modes' constituent y-mode magnetic field components which are 
tangential to the interface are matched across the interface. 
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y-component 

Matching the y-component of the magnetic field at the interface between subregions A and B 
yields the expression 

*iTM \jTE MTM fjTE 

X 'AX VAy(y)+^ 1 hx vAy(y) = 1 hxvBy(y)+^ X hx vBy(y) 
n Tm       p i *m       j 

Using orthogonality of TM-to-z y-modes in subregion A 

rh   <i <j        ± 
\{VAy{y)VAy(yfdy = 8ij 

and integrating over the subregion interface yields the coupling equation 

KjTE y flTM y 

hx 
+-Z£TA1IAX \w

y) Wy)dy= I7*J Vy) Wy)dy 
T

m      P yi l y\ 

Tm       J yi 

This equation can be expressed in terms of the coupling matrices <&, C, and A as 

N¥ N
T

B
M .   NI

E 

,mn        Id, «mp # ±  >mi « »mj 

lAx  + 2®mplAx   =  2Cin*IBx + XAÄ 
P ' J 

In anticipation of the further derivation to ensure power conservation, also define 

'«   yi 

z-component 

Matching the z-component of the magnetic field at the interface between subregions A and B 
yields the expression 

NT
A
E Nf      .    . A     «mn   «n _£,    «mi   «i ^H,    «mn   «n _=.    «mi   «i 

liAxiAy(y)=liBxiBy(y) 
n i 

Using orthogonality of TE-to-z y-modes in subregion A 

J'h "' «J       * ~ 
0iAy(y)iAy(y)dy=sij 

and integrating over the subregion interface yields the coupling equation 

NlE    . yu «mn        _£L    «mi   /•    «n        *   .ii 
1

AX = X7ß, \lAp)hy(y)dy v y 
i y{ 
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This equation can be expressed in terms of the coupling matrix A as 

N. TE 

= 2* in   MBr 

III.2.3   Complex Power Conservation 

To ensure power conservation across the subregion interface regardless of the number of x-modes in 
subregions A or B, the technique described in Section 2.3.2.3 is used. By constructing column 
vectors for the transverse eigenmode voltages and currents for the mtn z-mode, with the TE and 
TM components separated, the coupling expressions from the field matching can be written in 
matrix form 

I 0 

-G I 

I $ 

0 I 

,m 

„m 
VR 

„m 
JLU.J 

c 0 

-B A 

C+ A 

0 A+ 

,m 

„m 
VA,J 
,m" 

1BX 

»m 
_ll_   DrJ 

The power flow through the discontinuity for the mth z mode is determined from the fields in 
both region A and region B. The coupling between the modal fields in regions A and B must ensure 
that the power coupled from modes in region A to modes in region B is the same as the power 
coupled in the opposite direction. 

yu 
N} N* .y« 

Pi = JE?, XH?JA dy = X J^VTJZ \ *TA *KA dy 
y, n    p yi 

y NB NB yu 

Pi = jWß x H?B*dy = £ ± V%»lf J e"rß x hf/dy 
yi n   P yi 

For any given region, ej   and \\j     may be split into TE and TM components and the power 
' B iß 

integral evaluated as follows 

yu 

xhT • uxdy 
yu 

-J 
yi yi 

yu 

■J 
yi 

yu 

<n <p <p 
e
z
uzx(Äy   uy+h

z   
uz) • uxdy 

= \-en
z(y)hy

P(y)*dy 

\v'y(y)yy{yfdy 

yi 

= 8, np 
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yu y„ /• nn     up r 
J e^ x hj   • ux dy = J 

y/ y/ 

yu 

nn nn n/7 
(«y uy+ez uz)x/iz   uz •Ux^y 

= J   ey (y)hz (y) dy 

yi 

yu 

-jly(y)ly (y)dy 

yu „ * y« f    in "P r 
ey x hj   • uxdy = I 

y/ yi 

yu 

yi 

Jnp 

<n <n "P 

-\ 

(eyuy+eyuz)x(hy   uy + hz    uz) 

,n up       #        in "P       .,. 
-ey(y)hz  (y) -ez (y)hy (y)   dy 

• uxdy 

yi 

=-^ I £ W'7 w>+^ J v; &< w> 
y/ 

*r_ y« 

2* 

tl/I t /? I»     tin »// 

I e^ x hT  • ux dy = 0 

y/ 

Using the previously defined TE and TM-to-z x-mode coupling matrices, the power in region A is 
given by 

^ „m 
L'A.J L 

I 0 

o+-r I 

c 0 

A+ A 

.m 
VA* 

„m 
LVA,J 

-,-1 

<D+ I 

,m 
1BX 

„m 

„m 

-,t 

A+-A$+ ,     A 

_A+-Ar !     A 

$+-r |   i 

'Ax 

o+-r 

VA, 

„m 
LVAXJ 

,m 

„m 
JLVA 

LVA,J 
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Similarly, for region B 

r-   m-.+ r- 
Bx 

L^J L 

„m 
L'B.J 

.m -.t.- 

„m 

1BX 

I     |     0 

F+-G ,     I 

I     |     0 

F+-G |     I 

I     |     0 

F+           I 

.m 

„m 

I 0 

-G I 

C 0 

-B A 

-,-1 

-B 

V A* 

„m 
JLVAXJ 

im 

»m 
JLVA*J 

„m 
L'B.J L F+C-B 

,m 

'A, 

„m 
JL'A.J 

Note that+ denotes the conjugate transpose of the superscripted matrices. From the completeness 
relationships shown below, the power crossing the discontinuity can be calculated for the modes 

in both region A and region B. The following substitutions will ensure that P^ = Pg for any 

number of x-modes in subregions A and B 

A   -»C+F 

B  ->Ar 

As in Section 2.3.2.3, these relationships must be satisfied automatically for an infinite number 
of modes in subregions A and B, since both the field matching and power conservation will in 
principle be perfect. This can be proven by using completeness relations for the y-mode fields as 
follows 

CfF 
np = I -h-9- lWy)\(y) M Vy)Vy) dy' 

q       T m    yt yi 

yuyu N: TM 
k™(0£()   f   r    <n „,    «p ^     <q        *    <q 

=^rA\SWy)Wy) 2 VJ) Vywy 
T

m   yi yi 1 

keener) yr   <n     *   »P 

ki    J    y        y lm    yi 

= 4*       as required. 
mp 
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Similarly 

NT*Eyu .m,,,, yu 

? y/ 

■m    ytyi 

\rri 
lm     yi 

= Bnp     as required. 

The final form for the coupling which guarantees conservation of complex power regardless of 
the number of x-modes in subregions A and B is therefore 

I 0 
-   ,m- 

VR c 0 
,m 

VA, 

_ -G i 
„m 

VR l_    Bx- -Ar A 
„m 

I 0 " c+ C+F 
- ,m~ 

r i 
„m 

L*AJ 0 Af _ l_  Bx_l 
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APPENDIX IV      SUBREGION COUPLING SUMMARY 

The coupling between adjacent subregions has been determined using a field matching technique in 
Section 2.3.2.2 for TE and TM-to-y y-modes and Appendix III for TE and TM-to-x and TE and TM-to-z 
y-modes. The coupling expressions subsequently obtained ensure that the complex power crossing the 
subregion interface was conserved, while still satisfying the field matching criteria when an infinite 
number of modes are included. The coupling expressions for two subregions where the x-mode fields are 
expressed in terms of mode functions which may be TE and TM-to-x, y, or z are listed in this section. 
The full derivation is not considered worth repeating, and is almost identical to the approach 
described in Section 2.3.2.2 and Appendix III. The full coupling expressions for arbitrary y-mode 
reference directions allows the use of different combinations of TE and TM-to-x, y, and z y-modes in the 
same two-dimensional cross-section. 

IV.l   TE, TM-TO-YMODES IN A, TE, TM-TO-YMODES IN B 

I -F VR c -CO VA* 

0 I l_    Bx- 0 A 
.tin 

LVAJ 

I 0 !A* " c+ 0 

r I 
„m 

_A+G A+ _ 
„m 

IIW ±    »p 

yuIB (y)*IA (y) 
'■np 

yi 

yu 

£A(y) 

cnP=\yn
By{y)*yP

Ayiy)dy 

yi 

^nP=-Z-^T1jVBy(yfVBy(y)dy 
kuPB    Vl 

i,m s.ir- y<* 

*np=^ä1jVA(yfVA(y)dy 
U
PA yi 

GnP = z ,2    I     „ , /—dy 
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IV.2  TE, TM-TO-X MODES IN A, TE, TM-TO-X MODES IN B 

I -F 

G I 

I -* 

r I 

,m 

.tin 

LVBX. 

„m 

c -OD 

Ar A 

c+ -C+F 

A+G A+ 

,m 

„m 
JLVA,_ 

■ ,m" 
l*x 

»m 

JL^J 

Anp=\l"By(y)*IAy(y)dy 

yi 

CnP=jVBy(y)*VAy(y)dy 

yi 

y 

FnP=^jvl(y)*VB
P(y)dy 

yi 

yu 

<D np -^KM^M* 
yi 

yu 

Z        y{ 

Z       y[ 
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IV.3  TE, TM-TO-Z MODES IN A, TE, TM-TO-Z MODES IN B 

I 0 VR C 0 VA, 

_ -G I 
„m 

LVB,_ _-Ar A 
„m 

LVAJ 
I <D " c+ C+F 

0 I 0 A+ _ 
„m 

!R 

Kp = jiBy(y)*iAy(y)dy 
yi 

CnP = \y
nBy(yfvPAy(y)dy 

yi 

r«p=^2    J 7Av (y) 7Ay (y) ^y 
yi 
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IV.4  TE, TM-TO-Y MODES IN A, TE, TM-TO-X MODES IN B 

I -F 
-   ,m- 

VB, 

G I 
„m 

LVB_ 
I 0 JA, 

r I 
„m 

C -CG> 
-   ,m- 

VA, 

0 A KJ 
c+ -C+F rR 

A+G A+ _ 
„m 

yi 

yu 

yi 

z   yi 

kmCO£(\  y?    <n *    »p 

*nP=^r-\vAyW
VAy^

dy 
kupA   yi 

Z      y, 

"" *   <P 

U
PA   yi 
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IV.5. TE, TM-TO-XMODES IN A, TE, TM-TO-YMODES IN B 

I -F VR BX 
c -C<5 VA, 

0 I VR L   Ox- _ Ar A LVAJ 
I -<D 

*A* 
" c+ 0 !R °x 

r I 
„m 

A+G A+ _ 
„m 

Knp 

yu 

yi 

yu 

= ivl^vAy^
dy 

yi 

-np    j   „y 

vnp 
*!"ffleo7   •»      *   «p 

«£ J By By 
"•U r, _        11. KUPB yi 

K7       „. 

vnp 
z   yi 

J     y _  / J      dy 

rnp--^)rAyiP
Ay{y)dy 

Z     yt 
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IV.6  TE, TM-TO-X MODES IN A, TE, TM-TO-Z MODES IN B 

I 0 

-G i 

I -<D 

r I 

vt 

„m 
LVBX_ 

pi 

„m 

c -co 

Ar A 

c+ C+F 

0 A+ 

„m 
LVA,. 

„m 

Xnp=\iBy{y)*iAy{y)dy 

yi 

Cnp=jVBy(y)*VAy(y)dy 

yi 

k™0)£o 
F    =   z „ np       $ 

ivBy(y)*VB
P

y(y)dy 
37 

O np =^Kw<w* 
yi 

.m„.. y« 

'»»   37 

y« 

r^ÄJV,)'';»* 
y/ 
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IV.7  TE, TM-TO-Z MODES IN A, TE, TM-TO-X MODES IN B 

I -F 

G I 

I <& 

0 I 

,m 

„m 
VR 

„m 

c 0 

-Ar A 

c+ -C+F 

A+G A+ _ 

,m 
VA, 

„m 
LVA* 

JL'B.J 

/•      ft« ^    ftp 

Kp = \hy(y)iAyiy)dy 
yi 

CnP=jVBy(y)*V^y)dy 
yi 

VnP = ^yivBy(y)*VBy(y)dy 
z   yi 

z    yi 

r«^ = ^2    J %(» ^(?)dy 
yi 
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IV.8   TE, TM-TO-Y MODES IN A, TE, TM-TO-Z MODES IN B 

I 0 VR 

-G i VR l_   1%_ 

I 0 
_ fix- 

*AX 

r i 

C , -CO VAx 

0 1   A LVAJ 

c+ 1   CfF 

0 A+ _ 
„m 

Kp = J     . ,:   dy 
yi 

yu 

Cnp=jVBy(yfV^y(y)dy 

yi 
y 

KP=
!^jvZ(y)*VB

P(y)dy 
KT Lm      yi 

■y 

®nP = -J-^JL J ny (y) vAy (?) rfy 

l">   yi 
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IV.9   TE, TM-TO-Z MODES IN A, TE, TM-TO-YMODES IN B 

I -F 

0 I 

I <D 

0 I 
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„m 
VR L   Bx. 

„m 

C     | 0 
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c+ 0 
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VA* 

LVA*. 
,m 

„m 
LJBXJ 

yu 

Kp = jiBy(y)*iAy(y)dy 
yi 

yu 

Cnp=jVB(yfVA(y)dy 

yi 

kupB yi 

yu 

0      =-L „ gmLfv* $VAy(y)*VAy(y)dy 

'm   yi 

k?mi>yrIByM*IByWd 
"n/? -    ¥ ,2      J 

*•„ i    £B(y) 

^=^kw*'Iw<* 
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APPENDIX V ANALYTIC ZERO, POLE LOCATION TECHNIQUE 

From the moments Sn derived from Cauchy's Theorem as discussed in Section 2.3.2.7, the position of 
zeroes and poles of a function within a given contour can be determined analytically in the following 
cases. 

s0 = o 
Can handle no zeroes or poles, or one zero and one pole. If there are no zeroes or poles, then Si also 
equals zero. For one zero and one pole 

Si=zi-Pi 

Si = z? - Pi = (zi -Pi){zi +Pi) = Siin+P!) 
So 

Zl = 

P\ = - 

5,+^- 

*-* A 
S0 = l 

Can handle one zero, or two zeroes and one pole. For one zero, z\ = Si. For two zeroes and one pole 

Sl=Zl+Z2~pl 

c      ,2,2       2 S2=Zi +Z2~Pl 

S2=zl + zl-pl 

So 

Zi+Z2 
2M 
3 ^2 - Si 

C 

and 

Pl = C-Sl 

Hence, z\ and Z2 may be separated as 

Z2 

C + ^C2+2S?-4CSl + 2S2 

C-^C2+2S?-4CSl+2S2 
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Can handle one zero, or two poles and one zero. For one zero, pi = - Si. For two zeroes and one pole 

2       2       2 
S2=Z\ -Pi -Pi 

c      J     J     J 
$3=Z\ -P\ -P2 

So 

Pl+Pl 
_ 2 S3 - Sj _ c 

3 52 + 5? 

and 

Hence p\ and p2 may be separated as 

Zi = C + S{ 

1 
PI- 

1 
P2 = 2 

S0 = 2 

Can handle two zeroes 

where z\ and Z2 are given by 

So = -2 

Can handle two poles 

where pi and p2 are given by 

C + ^C2 + 2S?+4CSl-2S2 

C-^jc2+2S2 + 4CSl-2S2 

Sl=zl+z2 

S2=z2+zl 

Z2 = 

~^2S2-S? 

Sj + ^2S2 - 5j 

Sl=pl+p2 

$2= Pi +Pl 

1 

"1 = 2 
-Sl+^-2S2-S? 

1 
ft = 2 ~si --y_252- s\ 
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APPENDIX VI     CROSS SECTION FIELD EXPANSIONS 

For evaluating the z-mode fields in each section for output and for calculating the coupling between 
z-modes in adjacent sections, the z-mode fields are expressed in terms of the x-mode and y-mode 
equivalent network voltages and currents. These voltages and currents are defined in Section 2.3.1 for 
y-modes and Section 2.3.2 for x-modes. The derivation of the ^-components of E and H from the y and 
z-components is described in Section 2.3.2.9. The y and z-components are written directly from the 
definitions of the y-mode and x-mode field in Sections 2.3.1 and 2.3.2. The power transmitted in the 
z-direction by the z-modes in each two-dimensional section is derived from the field expansions as 
discussed in Section 2.3.2.9. 

Therefore 

and 

VI.l   TE,TM-TO-YMODES 

N. TM „n 

■?-      «mn 

y      ^   x        er(y) n 

NTE NTM 

„ y       ,mn ,n JL   b    (0£r\     "mn "" 
ET =I,VX   (x)Vy (y)- X !b^Vx   (x)Vy (y) 

n n      kUn 

NT
y
E 

'     ,mn <n H?=-J,Ix  (xWy(y) 
n 

NTE NTM 
~        -J—   k    fflUn    '"in in JL    «mn «n 

H? = X ^P-Ix   (x)Iy (y)+ £ /,   (x)Iy (y) 
n      Kn n 

NTE Nm 
V        i ftl V 

E? = £ ^H   (*)Vy 00- X *x    WVy (y) 
n Kn 

NTE NTM 
v y     7 tn 

m y       ,mn in y     Jc    (t)Fr\     "mn "" 
HT =lvx (x)iy Co- X ^^v* Mh (y) 

kun 
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The power flow in the mth z-mode through the two-dimensional section is given by 

N™ NTE x v 
_ J—i    v-1    f   ""in imp        4        f    »n <p       j. 

Pz
m=iX}/,    (*)/,   (*)*<&/V, (y)Vy (y) rfy 

n     P  X[ yt 

N™ NTE x v    ,""       ,'p      * 
%  % 7    „mn ,mp        „      *? I    (y)Iy  (y) 

n     P  xi 

NlENTE 

yi 
er(y) 

yu 

+ X X       .2     J 7*   (x)/*   W <& J Vy (y)Vy (y) dy 
«     P      kun     xt yi 

fjTM NTM       * r v    x"n        r"p      * 

y    y  km (OEa e •"««      «mp    *    f /v (y)/v 00 + 1   Z^-^-K   WV/UMJ  y   "       "   dy 
n      p       "■up      xl yi 

£r(y) 

Therefore 

and 

VI.2   TE,TM-TO-X MODES 

N. TM N. TE 
•J-,    fillln     '"in in _i_,      <<mn «n 

Ey = 1T£V*   «7? ^+ IX   (^ <?> 

AT™ ^^ 
„ y        xmn <n _L   ü)£r>     "m,! "" 

^m = I V,   (x)Vy (y)- I ^-Vx   (x)Vy (y) 
n      K n      z 

AT, raf AT; TE 
\tnn in (0£Q it mn i»n — — I   ffl/t I   « winii.- tfil-f\ "•!*•* ■"* 

AT 

n 
TM 

n     KZ 

N, TE 
',    fill I r.    itnn in _i-i     "mn "n 

H? =E% Wh(y)+ I7. Wy (>) 
»    *z 

A', 
TM 

^=-z 
^ n2 

kOer~kxmn 

N. TE 

Hxn=-1L 

kzco£Qer 

' 2 "2 

k0£r~kxmn 

itnn in 

h   (x)Vv(y) 

k?G>fi0 

iimn tin 

Vx   (x)Iv (y) 
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The power flow in the mth z-mode through the two-dimensional section is given by 

Hence 

and 

N™N™ 

^m = -IS 
^0 ^r ~ *x mp 

JrmIrm  P n     p        Kz Kz   fcr 

/•   i mn »mp        ^        j»    I/I up        * 

)IX   (x)Ix   (x)*dx\Vy(y)Vy (y) dy 
xi yi 

N™N™ 

+ IZ- 
n     p 

N™N™ 

+ 11 
n      p 

2 "2 1 
*C0er~'Cxmp\X"    ,mn „mp        *      yS ,n „p        * ! —\VX   (x)Vx   (x)*dx\ly(y)Iy(y) dy 

km,m 
Kz Kz 

2 '2 
k0er~kxmn 

xl yi 

yu 

k™CQ£o£r 

i»    t mn i my ^ pin % p * 

\lx   (x)Ix   (x)*dx\Vy(y)Vy(y) dy 
xi yi 

+ 
kQ^r ~ ^x 

„    p        k"L 0)ßQ 

mp yu p     Minn »mp j, p    %m up * 

JVX   (x)^   (jc)*^J/y (y)Iy (y) dy 
*i yi 

VI.3   TE,TM-TO-Z MODES 

NTE NTM 

E? = X V,   (*)/, (y)- I ^r^-V,   (*)/, (y) 

M 

n 

7M 

« 'm 

^m = £ V,   (jc)Vy (y) 

AT™ NTE 
V V      »/w 

*? =- E h   (x)Vy 00- £ ^Sl/,   (*)V, (y) 

AT, 

n 

TE 
i/Wrt n/I 

H?=JJlx  (*)/, (y) 

\jTE 
A\,     ,2 AT. 7M 

£* =- X ^K  (*>y, 00- I -^—/, wv, (y) 
'' „    O)£0£r r,    kT n      I m 

N™   o NTE 

Hm =J&     (x)/y (y)_ £ -5S_VX    (*)/, (y) 
0>/*0 
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The power flow in the mth z-mode through the two-dimensional section is given by 

NTEN™  ,2 xu yu 
pT= II-fK   {x)Ix\xfdx\vy (y)Vy (y)*dy 

n     p     lm X[ yi 

NTEN™   o     xu yu JL    J-,    knF      e    ""in <mp        „.        ?   «n >p        * 
-S S ^i \VX   (x)Vx   (x)*dx\ly (y)Iy {yfdy 

«     P   kj     xt yt 

M™ NTE * x v 
+* \A kmkm    r <mn       "mP      *      t   '*        "P     * + IJl

!Yt-jlx   Mix   ixfdx\vy(y)Vy{yfdy 
n     p   kTm 

er X[ yi 

y    y kmkm   r <mn      -mp    *    t 'n     "P    * -II^-V,   (x)Vx   {xfdx\ly{y)Iy(yfdy 
KT n     p       1m    X[ yi 

NTMNTM 
y    y    km   t "»"     <«v    *    f ■»     'P    * 

+ 1  1-^-Ux   Mix   (x) dx   Vy (y)Vy (y)*dy 
n     P        u r xt yi 

\jTM \jTM y 

+ X  X *    J Vx   (x)Vx   (x) dx]Iy (y)Iy (y) dy 
n      p      kj  kT xi yi 

N™NT
E
 ,2,W*        XU yu 

+ LL         *   J h   (x)Ix   (x) dx J Vy (y)Vy (y) dy 
n    P    kTm

kTm    xi yi 

*jTE XTTE J, x V 
iYv    ■*   V      i tit        u Ju JL    JL    h r     "tnn »mp        * p   "M »p        * 

+ n^-h Wy* (*)<&//, (y)iy (y)dy 
^   ^  COLin J j   J J 
n     p      ™ X[ yt 
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APPENDIX VII    SECTION COUPLING 

To evaluate the coupling between z-modes in adjacent sections A and B, the components of the electric 
and magnetic fields tangential to the section interface were matched over the interface The technique 
used for the derivations in this appendix is identical to the approach used in Section 2.3.3.1 for TE and 
TM-to-y y-modes in both section A and section B. 

Calculation of the section z-mode coupling allowed the individual sections to be cascaded together to 
form the complete element being analysed as discussed in Sections 2.3.3.2 and 2.3.3.3. 

VII.l      TE, TM-TO-X COUPLING 

VII.1.1 Electric Field Matching 

To evaluate the z -mode coupling between adjacent sections A and B, where the y-modes are TE 
and TM-to-x in both sections, the x and y-components of the electric field tangential to the 
section interface are matched. This section of Appendix VII describes this process, which closely 
follows the TE and TM-to-y mode analysis in Section 2.3.3.1. 

x-component 

N 
lv»E 

N7 ' 2 '2 

^o £B ~ KB 

k™(O£0£B 

<mn 

3, hr MVB(y) 

NZ 

P 

NT 2 '2 

ko£A-kxA 

y 
q      kPAae0eA 

pq •PI <1 

iAxWvAy(y) 
(VII.l) 

Both sides of Equation VII.l were multiplied by 

N™ 
JL,    <rs        *    <s 
2hx(x)VB(y) 

Integrating over the aperture in the x and y directions and applying orthonormality of the 
y-modes yields 

where 

AVBz=BVAz 

NT[kleB-k;2
B  p«, 

lmn -E 
p       ' ZB 

rTM „TM r ;.2 

k"(0£Q£B 

/.   ,np <mp        f 

J hx i
x)hx (*) <& 

xt 

Bmn= I  1—-n 
n-^\lAx(x)IBx{xfdx\vA{y)VB(yfdy 

p      q        kZA
(oeQeA xl yi 

107 



DSTO-RR-0027 

In addition, multiplying both sides of Equation VII.l by 

NlE 

-77 Vx) vBy(y) 
s   kzB 

and integrating over the aperture yields 

where 

NlEN™ 

^mn      2-t   2L 

2 ,2 

kQ£ß-kxß 
nq 

xn yu m «mp        * 

p     q       KzB
KzB 

£B     xt 

/.   ,nq nmp        j.        r    "i "V        * 
)hxV)hx (x)dx\vBy{y)VBy{yfdy 

NT
B
EN™ 

* mn      2-t  2u 

2 '2 

KQ EA - kxA 
nq 

yi 

yu 

kn  k™    FA 
P    q zA

KzB 
fcA     X[ 

f   <nq «mp        *        r    '1 "P        * 
\lAx{x)IBx(xfdx\vAy{y)VBy{y)dy 

yi 

y-component 

*; 
M 

'< <* 

Zß      p 

AK 

= XyA; 

TM 
4,      n'/fc 

^A       * (VII.2) 

Both sides of Equation VII.2 were multiplied by 

N. TE 2 "2 

koeB~kxB 

s       k[B G>p0 

urs        j,   "j ^ 

Integrating over the aperture in the x and y directions and using orthonormality of the y-modes 
yields 

108 



DSTO-RR-0027 

where 

NF 

P 

1 "2 

kO£B~kxB mp 

k?B o)ßo      X[ 

/•    »np ntnp        j. 

jyBx (*WBX (x)*dx 

NlM 2 "2 

ko £B ~ KB mp 

um* in 
KzB 

KzB 

f    <nq «mp        ±        /•   >q »p        ± 

\^Bx^)VBx (x)*dxjlBy(y)IBy(y)*dy 

*i 

< 

•*mn      2mi 
P 

N™ 2 "2 
k0 eB ~ kxB 

yu 

J< 
yi 

yu ,     „nq „mp        ^ f   „q «p        * A\vAx(x)VB   (xfdx   IA(y)IB(y)*dy 
q kzB 0^0        xt yt 

NT 
o u2 

ko£B-kXB 
mp 

lrm*kn 
K

ZB 
K

ZA 

K y 

jVAxMVBx (x)*dx\lAy{y)IBy(y)*dy 

*i yi 

VII.1.2 Magnetic Field Matching 

To evaluate the z -mode coupling between adjacent sections A and B, where the y-modes are TE 
and TM-to-x in both sections, the x and y-components of the magnetic field tangential to the 
section interface are matched. This section of Appendix VII describes this process, which closely 
follows the TE and TM-to-y mode analysis in Section 2.3.3.1. 

^-component 

m n 

2 "2 

k0eA~kxA 

N»      NT
B
E 

iitnn tin 

vAx MiAy(y) 

0 "2 

koeB~kxB Pi 

p q kZB^0 

Both sides of Equation VII.3 were multiplied by 

Nf    .. 

„pq »q 

VBr (x)IB(y) 

vAxM iAy(y) 

(VII.3) 

Integrating over the aperture in the x and y directions and using orthonormality of the y-modes 
yields 

KI^LI^ 
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where 

N: TE 

^■mn      2-t 

«2 
^0 eA    kxA <np 

k"ü)ßQ 

» Http "ttlp jj, AjVAx(x)VAx (x)dx 
P        ' ZA   • u       xt 

NfNf 

P     Q 

«2 
kQ£ß-kXB 

nq 

kn
ZB(o^ 

S    «nq «mp        *        r   «q «p        * 

)VB'(XWAX (x)dxjlBy(y)IAy(y)*dy 
X, 

yu 

yi 

In addition, multiplying both sides of Equation VII.3 by 

N™ 
X -7T

V
AXW h(y) 

s    kl ZA 

and integrating over the aperture yields 

where 

FIA;=GIB; 

«r< 
^mn      2J   2-i 

P     1 

k0eA~kxA nq 

KzA
KzA xt 

r     nnq imp        * <•   »q < p * 
jVAx (x)VAx (x)*dxjlAy(y)IAy(y)*dy 

N\MNlE 

Gmn "XI 
P      9 

*j n2 
k0eB~kxB nq 

yi 

yu f    «nq <mp        ±        r   «q <p        * 
\vBx (*WAX (x)dxjlBy(y)IAy(y)*dy 

KzB
KzA xt yi 

y-component 

m 

N™ Nf 
*      <mn <n -O,   Q)£r\    "mP "P 

P   K*A 

N 

= 14 
NlM Nf a      ,i; ,; "     fftPp.     «ik «K 

k   KzB (VII.4) 

Both sides of Equation VII.4 were multiplied by 

N TM 
r) «2 

Kg £A - kx^ 

s        kr
ZA   CO£0£A 

UAxfVAiyf 
V^A 

Integrating over the aperture in the x and y directions and applying orthonormality of the y- 

modes yields 

CI^=DI*, 
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where 

N TM 

P 

2 -2 
KQ £A - kxA 

mp 

k?A <KO£A     xt 

f   <np <mp        % 

J lAx (
X)!AX (*) ^X 

N: TM 

P 

"7 
-E 

q 

NlM 

,2 
k0eA-kxA 

mp 

kzA 
kzA

eA 

2 '2   * 
kO£A~kxA "■mp 

q kZ  aeOeA 

C   «nq ,mp        4 f     «q ,p * 
\lAx (x)IAx {x)*dx\vAy{y)VAy{y)*dy 

*/ yi 

f   *nq imp        A f    *? «P * 

J/flx(*)/Ajt (*) <& J>ß(y)VAy(y)*dy 
*i yi 

NI
E 

-I 
2 i2 

^OeA~^A mp 

^  kZR£A 

X y 

{/ßx (x)/Az (x)*ifc}VBy(y)VAy(y)*dy 
xt yi 

VII.1.3 Complex Power Conservation 

As for TE and TM-to-y modes, using the field relations in Section 2.3.2.8, the power flow through 
any given section is 

N* N* 

Kot=iivAA z "z 
m    n 

NfN™ 
IS 
p   q 

l&r-K      ]xf   . yu 

k?tz 

Xm„   J   f    >nq «"ip        *        r   <q «p       4 

f-fV(^x    {xfdx\ly(y)Iy (yfdy 

xt 

[kZ£r-k      V», 

yi 

yu 
*nq 

km*kne 
Z      Z   r      X[ 

f   ,nq »mp        *        t    '1 "P        * 
\lx   (x)Ix    (xfdxjVy(y)Vy (yfdy 

yi 

xiTM      9 "2 

%   V%*r~K    Vf,v        ,mp      , 

p       kz<°eQer     X[ 

+ X     „.   mp   R Wx  W** 
p K   <OHQ xl 
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In terms of the previously derived coupling matrices 

ltr ptot _ 
"A   — iAJ [C

+
+FW][VA: 

Dt+G++Lt][vAi 

and 

TttOt 
"R   — [A + H-S] B, 

lB, [B + J-T] 

So for conservation of complex power, require 

Dt+Nt-Lt=B + J-Q 

This is true by inspection. Therefore, to ensure complex power conservation regardless of the 
number of z-modes used in each section, the following expressions for the current and voltage 
coupling will be used 

[CI] = [C + F + K]"1[D + G + L] 

[Cv] = [A + H-S]"1 [B + J-T] 

= [A + H-S]-1 Dt+Gt+Lt 

VII.2       TE,TM-TO-Z COUPLING 

VII.2.1 Electric Field Matching 

To evaluate the z -mode coupling between adjacent sections A and B, where the y-modes are TE 
and TM-to-z in both sections, the x and y-components of the electric field tangential to the 
section interface are matched. This section of Appendix VII describes this process, which closely 
follows the TE and TM-to-y mode analysis in Section 2.3.3.1. 

^-component 

■rm     NlM kl "i% ■■7 »—■     <mn <n iff.       _K,    «mp «p 

?- I hx (x)VB<y)+fhlhx WVii(y) 
(0£oeB   n 

N 

= 1VA 
kl N7 2  N7 „, 

■7        vii    • </ <j kK    ri   "llc ',lc 

^r I 1
AX tew* (y)+r%rl 1AX MvAy (y) 

0)£0£A   - 'TAi    k 

Both sides of Equation VII.5 were multiplied by 

N. TM 

(VII.5) 
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Integrating over the aperture in the x and y directions and applying orthonormality of the y- 
modes yields 

where 

KzB      r -np ■  ■ -mp 

NT
B
M 

P 

0)£Q£B 

h   >np <mp       ^ 

J hx (
x)hx (x) d* 

X, 

9   N^ x y 

kA    at, fn     q   X[ 

NlM 

P 

yi 

yu fr«      NT
A
Mxu 

K7 Ji,    f   ,nq ,mp        *        e    '1 'P        * A     I K (x)IBx {xfdx\vAy{y)VBy{yfdy 
Q)£Q£A 

q   X[ 

,2   NlMxu 

yi 

yu 
kk     ■£-<    r   »nr        <mP       *       r    "r 'P       * 

+fr- I .K«7** (x)*dx\vAy(y)VBy(y)*dy 

In addition, multiplying both sides of Equation VII.5 by 

T AT* *-* 
K7 „   (OEc\   -JL    »rs        4     »a . 

and integrating over the aperture yields 

where 

SVB,=TV 

1? 

P 

,« , m * NT
B
Mxu 

K
ZB

K
ZB      —   '  ' 
™     N'B
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P 
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.m"  N'A
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V
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A
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i/-component 

m * M™ NTE 

k™  (OU0
NB     ,mn       ,„ "B    „mp       „p 

kTBm       n 

NC 

•l*k 
:   * MTM NTE 

kl   mo A   <v       >j A   ••<*      •■* 

(VII.6) 

Both sides of Equation VII.6 were multiplied by 

S * < 

Integrating over the aperture in the x and y directions and applying orthonormality of the y- 
modes yields 

HVBz=JVAz 

where 

NlE 

P 

/^ (x)VBx (xfdx 
(OflQ 

km"kn   N'B
mxu 

xl 

. *   „     xrTM ■ 
,T     AC,      _£L     e    <nq «mp        ±        t   '1 "P        * 

fr*-1 Ji£<*>^ (X) * J Vy)Vy) J;y 

< 

• m* NlE*u 

fi>jU0 

-ß,    m     «nq «mp        * r   «q up ± 

1 JVAX (x)VBx (x)*dxjlAy(y)IBy(y)*dy 
1   xt yi 

+ ZB     ZA 

CTA„ 

VA 
X

U y<* ,      „ 

1 jvAx(xWBx (x)*dxjlAy(y)IBy(y)*dy 
Xi yi 

In addition, multiplying both sides of Equation VII.6 by 

2      N™ 

kTBr     s 

and integrating over the aperture yields 

PV« =QV, 
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where 

NlM 

p = y 1 mn      £j 

P 

%s/^:u<w*4^(><w^ 
KTBm     <7   xi yx 

NlM 

P 

0    *      9 

■r-l       r      '"' ,mP sit f    '' 'P * 

y« 

i2   \2 

vA    XM Ju 

£ K>)^ (x)dx\lAy(y)IBy(yfdy 

VTI.2.2 Magnetic Field Matching 

To evaluate the z -mode coupling between adjacent sections A and B, where the y-modes are TE 
and TM-to-z in both sections, the x and y-components of the magnetic field tangential to the 
section interface are matched. This section of Appendix VII describes this process, which closely 
follows the TE and TM-to-y mode analysis in Section 2.3.3.1. 

^-component 

m 

k?   Nl 
TE 2„    Nl" 

'■7.     vii      »"in »n ]d\F *    •A      'mP 'P 
^-lVAx   (,)/,   (y)--^ £ V      {X)1■     (y) 

Q)ß0 "TAm     p 

= ±IlB 
ki NF ,2      N™    .h 

KTBi     k mo y   x 
(VII.7) 

Both sides of Equation VII.7 were multiplied by 

^    »rs      * »s      * 

Integrating over the aperture in the x and y directions and applying orthonormality of the 
y-modes yields 

n^-u* 
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where 

< 
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n      1    X[ 
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kOeB 

yi 

In addition, multiplying both sides of Equation VII.7 by 

t„pn   ,JL     r    <nr «mp        ±        /•   <r «p        ± 

~f¥- X !
V

BXWVAX {xfdx\lB{y)IA{yfdy 
"TB„     r 

yu 

I- 

NTM 
kZA    WO    4i   „'",__,*," IVAixfhiyf 

KTAr        * 

and integrating over the aperture yields 

where 

™Az=
GIBz 

NT 

km*kn   N%Exu 
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2   *fr 2 
37 

N TM 

Gmn ~  X 
P 

m*hn   NlExu K*  Ko "J, 
V D xu yu 
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I \VBX W

V
AX (x)dxjlBy(y)IAy(y)*dy 

"TAm      1  *i yi 

k™*ki(öß0eB
Nl?X^.nr - y« 
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"      f    >nr imp        *        P   <r <p * 
X jVBx(x)VAx(x)*dxjlBy(y)IAy(y)*dy 

yi 
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y-component 

N? 'NT 'r™ r*c     N 
TE 

Vi,    >mn <n K7, (0£(\   _di    "mP "P 

*74.  I» 

AT ß 
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vrM ; N
TE 

\B     ,ij ,j k7nC0£(\"B    „,* „jt 

I /*, W VIL (y)+-fr^ I ^ WL (y) 
(VII.8) 

Both sides of Equation VII.8 were multiplied by 

*: 
*      ATTM Ni 

■ZA 

(0£Q£A 

Integrating over the aperture in the x and y directions and applying orthonormality of the 
y-modes yields 

ciA=wB, 
where 

N™ 

P 

KZA 

aeQeA 

p   <np ,mp        „. 
J lAx (

X)JAX (x) dx 
xi 

um*kn   NT
A
Exu 

kTAjA 

V'A 
xu yu ,2,    *   «nq ,mp        +        c     „q ,p ± 

£ )IAX (X)/AX (x)dx\vAy(y)VAy(yfdy 
q   x, yi 

N™ 

^mn      2u 

P 

,m*   NT
B
Mxu 
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(oeQeA 
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£ J'äX(*)'A, (x)dxlvBy(y)VAy(y)*dy 
q   xt yi 
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ZA    ZB 
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In addition, multiplying both sides of Equation VII.8 by 

NoExu yu ^2,    c   «nr imp        „,        e    «r ,p        „, 
£ jhx (x)IAx (x)dxjVBy(y)VAy(y)*dy 

>7 

jTE 

0    llAx(x)*VA(y? 
,2    N'A 

2 * 
KTAr      s 

and integrating over the aperture yields 

MV„ =NV, 
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where 
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P 

TTM ■ yu 9      NA    *U 
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yu 

yi 
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VII.2.3 Complex Power Conservation 

As for TE and TM-to-y modes, using the field relations in Section 2.3.2.8, the power flow through 
any given section is 

N?N? 

f=XlW 
m    n 

NTMNTE 
£ lly lly AU 

Tn     P       1    Xl 

yu 
Ex-i   r ""?       ,mP     *      r   "9        <p     * 2K   Wx   M*dxjVy(y)Vy(yfdy 

yi 

TM xrTE, NIMNIC 
.2       'yy     "y    •*« 
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Z X K W
V

X wdx\iy Wy (y)Vv 
p   q X[ 

,* NjEN™x„ 

yi 

yu i,ni„m    "y       y    "''M 

+^-1 S J/x  (x)//(x)*&Jvy(y)Vy (y)> 
*rm 

er P   q xi yi 

yu rMtm    "y    ivy     xu -»    „ „ K   fc ^,    ^_,     r    <nq «mp        *        r   <q «p        * 

Tn P       q    Xi 

N™N™x„ 

yi 

yu /,/!        y       y      « 
& ^-1     -T-l     t   <"4 ,mP        * t    '1 'P        * 

, 2,n -"v   ^v   -^u yu 
knk,COUQEr   J-,    J-,    f    <nq ,mp       *        r   ■? 'P       * 

+ ° «   ,/ I   I K   MVX   (x)*dxjly(y)Iy(yfdy 
k2 k2 

"T T       P    q xi 1 n   L m ' 

yu 

!■ 
yi 

1*2,1 ffl V V     "^U 
K(\K„     (OS(\   iJ-n    TJ-I     r   "W "mP        *       "f     "9 "P        * 

it2 it2 
Kj  Kj P        q    Xi 

n*   NI
E
NI

E
XU 

yu 

y« i m    J'y    J"y    -*u 
fc JL    JL    r    «nq t<mp        *        r   «q «p        * 

p    q xt yt 

In terms of the previously derived coupling matrices 

f?=[IAj[ct-Ft+Kt+Mt][vA 

[lBJ
f[Dt-GULW][v, 

'Z J 

and 

= [lB2f[B + J-Q + T][vA2 

So for conservation of complex power, require 

D^GULUN^B+J-Q+T 
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This is true by inspection. Therefore, to ensure complex power conservation regardless of the 
number of z-modes used in each section, the following expressions for the current and voltage 
coupling will be used 

[CI] = [C-F + K + Mr1[D-G + L + N] 

[CV] = [A + H-P + S]_1[B + J-Q + T] 

= [A + H-P + S] -1 Dt-Gt+Lt + N+ 
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APPENDIX VIII   SECTION COUPLING SUMMARY 

The coupling between adjacent sections with the same choice of eigenmode (TE, TM-to-x, y, or z) has 
been determined using a field matching technique in Section 2.3.3.1 for TE and TM-to-y y-modes in both 
sections in the element, and Appendix VII for TE and TM-to-x or z y-modes in both sections in the 
element. The coupling expressions are formulated in such a manner as to ensure that the complex power 
crossing the two-dimensional discontinuity is conserved, regardless of the number of z-modes that are 
included. The coupling expressions for two sections A and B where the fields are expressed in terms of y- 
modes with arbitrary reference directions, i.e., TE, TM-to-x, y, or z, are listed in this section. The full 
derivations were not considered worthy of repetition and follow Section 2.3.3.1 and Appendix VII. 

VIII.l     TE, TM-TO-Y MODES IN SECTION A, TE, TM-TO-Y MODES IN SECTION B 

1-1 [CI] = [C-K + M]"1[D-L + N] 

[CV] = [A + H-P]-1 Dt-Lt + rf] 
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B
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£ß(y) 

NI
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N™NT
B
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NlE,,m* lyA    k"\   COUQ  7  ,np ,mp        * 
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NT 
"■mn      2-i 

P 

NT
A
Exu -     f    ,nq «mp        *      ^ 'AV OO'A, 00*    , 

9  xt yi 

x, 

£A(y) 

k7, 0)£()    f    «np «mp        * 
^T1jVAx(x)VAx(x)dx 

UPA     xt 

MTM MTEX 

"A    "A   *" ,r 
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VIII.2     TE, TM-TO-X MODES IN SECTION A, TE, TM-TO-X MODES IN SECTION B 

[CI] = [C + F + K]"1[D + G + L] 

[CV] = [A + H-S]_1 D^G^L1 
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^mn =  2L  2d 
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VIII.3     TE, TM-TO-Z MODES IN SECTION A, TE, TM-TO-Z MODES IN SECTION B 

[CI] = [C-F + K + M]"1[D-G + L + N] 

[CV] = [A + H-P + S]_1 Dt_Gt+Lt+Nt 
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VIII.4     TE, TM-TO-Y MODES IN SECTION A, TE, TM-TO-X MODES IN SECTION B 

1-1 [CI] = [C + M-K]"1[D-L + N] 

[CV] = [A + H-S]~1 D^^+N1" 
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